梦家
码龄9年
关注
提问 私信
  • 博客:619,943
    619,943
    总访问量
  • 146
    原创
  • 1,540,913
    排名
  • 3,181
    粉丝
  • 39
    铁粉

个人简介:博客主页:https://dreamhomes.top/

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
  • 加入CSDN时间: 2016-03-22
博客简介:

梦家の博客

博客描述:
https://dreamhomes.github.io/
查看详细资料
个人成就
  • 获得362次点赞
  • 内容获得213次评论
  • 获得1,847次收藏
  • 代码片获得1,435次分享
创作历程
  • 9篇
    2021年
  • 79篇
    2020年
  • 15篇
    2019年
  • 24篇
    2018年
  • 21篇
    2017年
成就勋章
TA的专栏
  • PyTorch
    4篇
  • AIOps
    7篇
  • paper reading
    5篇
  • scala
    12篇
  • machine learning
    20篇
  • community detection
    17篇
  • ubuntu
    25篇
  • deep learning
    12篇
  • Markdown
    3篇
  • Hexo
    2篇
  • python
    30篇
  • windows
    8篇
  • graph neural network
    10篇
兴趣领域 设置
  • 人工智能
    opencv
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

358人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

博客新推送

原创
发布博客 2021.06.08 ·
419 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

dl-active-loss-function


title: 机器学习中的激活函数与损失函数总结date: 2019-05-22 21:22:32tags: - 激活函数 - 损失函数categories:

原创
发布博客 2021.03.22 ·
1 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python 日期字符串和时间戳解析方法详解

原文链接:https://dreamhomes.top/posts/202103091919.html由于从事智能运维AIOps相关的算法研究,因此日常接触的最多就是时间序列相关的数据。在不同场景下时间字符串表示的格式可能都不相同,因此本文记录下所了解的字符串解析方法。time 模块一般情况下都是将时间字符串转为时间戳或者反之转换,time 模块即可解决问题;import time# 时间戳转为日期time.strftime("%Y-%m-%d %H:%M:%S", time.local.
原创
发布博客 2021.03.09 ·
5819 阅读 ·
3 点赞 ·
1 评论 ·
5 收藏

解决 Kibana 6.8.9 中创建索引模式卡住的问题

问题描述软件版本:kibana 6.8.9Elastic 6.8.9在 Kibana 中创建索引模式时,一直卡在如下界面导致未创建成功:同时日志报错信息如下:从日志中可以看出索引仅有 只读权限,状态码为 403;解决方法参考官网为:https://www.elastic.co/guide/en/kibana/6.0/migrating-6.0-index.html解决方案⚠️注意:按照以下步骤即可解决问题,但是会丢失以前创建的所有模式。第一步:设置.kibana的index.
原创
发布博客 2021.03.08 ·
1610 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

【2021】Multi-Source Anomaly Detection in Distributed IT Systems

原文链接:https://dreamhomes.github.io/posts/202101251633.html文章链接:https://arxiv.org/abs/2101.04977源码链接:未公布TL;DR针对分布式系统服务的异常检测问题,文中提出了一种多模态的异常检测模型,联合了 trace 和 log 数据的特征表示来共同判定异常;对于异常检测任务将其形式化表示成 NTP next template prediction,同时适用于log和trace的异常检测;在实验中论文验证了.
原创
发布博客 2021.01.25 ·
541 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【2017/MLG】graph2vec: Learning Distributed Representations of Graphs

原文链接:https://dreamhomes.github.io/posts/202101181459.html文章链接:https://arxiv.org/pdf/1707.05005.pdf源码链接:https://github.com/MLDroid/graph2vec_tfTL;DR目前图表示学习方法主要是学习图中节点或者子图的隐含向量,但现实中很多任务例如图分类或者聚类都需要将整个图编码成固定长度的向量;此外,以前基于图核的方法由于使用自定义特征因此通用性较差。本文中提出的一种无.
原创
发布博客 2021.01.18 ·
1135 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Python 高效命令行参数解析方法总结

原文地址: https://dreamhomes.github.io/posts/202101161752.html背景命令行参数工具 Python 中常用的工具,比如做实验希望调节参数的时候,如果参数都是通过硬编码写在代码当中的话,每次修改参数都需要修改对应的代码和逻辑显然这不太方便。比较好的办法就是把必要的参数设置成通过命令行传入的形式,这样我们只需要在运行的时候修改参数就可以了。本文总结下三种好用的参数解析方法。argparseargparse 是 Python 自带的命令行解析库,比较常.
原创
发布博客 2021.01.16 ·
608 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

解决 Elasticsearch 写入数据报错 blocked by: [FORBIDDEN/12/index read-only / allow delete (api) 问题

背景最近使用脚本将 50+ 数据写入Elasticsearch中时,中途报错:'error': {'type': 'cluster_block_exception', 'reason': 'blocked by: [FORBIDDEN/12/index read-only / allow delete (api)];'};后来查询才知道是 ES 认为磁盘存储百分比低于阈值时自动将其转为只读模式。参考:https://stackoverflow.com/questions/50609417/elasti
原创
发布博客 2021.01.07 ·
2194 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

【2019/ICML】DAG-GNN: DAG Structure Learning with Graph Neural Networks

原文链接:https://dreamhomes.github.io/posts/202101041501.html文章链接:https://arxiv.org/abs/1904.10098源码链接:https://github.com/fishmoon1234/DAG-GNNTL;DR论文中提出一种新的DAG编码架构 DAG-GNN,其实模型的本质就是一个图变分自编码器,模型的优点是既能处理连续型变量又能处理离散型变量;在人工数据集和真实数据集中验证了模型结果可以达到全局最优 ????;Mo
原创
发布博客 2021.01.04 ·
1763 阅读 ·
3 点赞 ·
1 评论 ·
4 收藏

PyTorch 中的损失函数总结

原文地址:https://dreamhomes.github.io/posts/202012261041.html文章目录原文地址:[https://dreamhomes.github.io/posts/202012261041.html](https://dreamhomes.github.io/posts/202012261041.html)L1Loss实例代码验证代码MSELoss(L2Loss)实例代码验证代码SmoothL1Loss实例代码NLLLoss实例代码验证代码CrossEntropy.
原创
发布博客 2020.12.31 ·
865 阅读 ·
1 点赞 ·
1 评论 ·
7 收藏

SciPy 中不同稀疏矩阵存储方式介绍

文章目录稀疏矩阵简介稀疏矩阵Scipy 矩阵存储矩阵属性通用方法稀疏矩阵分类COO - coo_matrix适用场景优缺点实例化方法特殊属性代码示例CSR - csr_matrix适用场景优缺点实例化特殊属性CSC - csc_matrix实例化特殊属性BSR - bsr_matrix实例化特殊属性代码示例优缺点DOK-dok_matrix适用场景实例化方法优缺点代码示例LIL-lil_matrix适用场景优缺点实例化方法特殊属性代码示例DIA - dia_matrix实例化方法特殊属性代码示例矩阵格式对比
原创
发布博客 2020.12.30 ·
662 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

python 将变量名转化为同名字符串

作用locals() 函数会以字典类型返回当前位置的全部局部变量。如果是动态命名变量,需要动态获取变量的变量名来进行操作。源码测试import inspectdef retrieve_name(var): ''' utils: get back the name of variables ''' callers_local_vars = inspect.currentframe().f_back.f_locals.items() return [var
原创
发布博客 2020.12.30 ·
2622 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

Python 执行报错 TabError: inconsistent use of tabs and spaces in indentation

问题VScode 中执行python脚本报错 TabError: inconsistent use of tabs and spaces in indentation,该问题是由于代码中 看似空格实则没有空格引起的,因此在可以通过编辑器渲染出空格是否存在来看出问题;解决方法例如在 VScode 中,在方settings 中搜索 Render Whitespace,选项中选择 all 即可在编辑页面以 . 渲染空格;...
原创
发布博客 2020.12.28 ·
810 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【2019/SDM】Deep Anomaly Detection on Attributed Networks

文章链接:http://www.public.asu.edu/~kding9/pdf/SDM2019_Deep.pdf源码链接:https://github.com/kaize0409/GCN_AnomalyDetectionTL;DR目前属性网络中的异常检测方法都是使用浅层的学习机制或者子空间特征,但现实中属性网络非常稀疏并且数据是非线性的。论文中提出一种基于图自编码器的异常检测模型 DOMINANT (Deep Anomaly Detection on Attributed Networks).
原创
发布博客 2020.12.24 ·
1683 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

【2021/ASPLOS】Sinan: ML-Based & QoS-Aware Resource Management for Cloud Microservices

文章链接:https://asplos-conference.org/abstracts/asplos21-paper43-extended_abstract.pdf源码链接:未公布TL;DR随着微服务架构日趋复杂以至于难以合理分配微服务所需资源,论文中提出一种微服务资源配置管理模型 Sinan,主要是考虑了不同层级服务间的依赖关系;Key InsightsDependencies among tiers (microservice graph)System complexity and .
原创
发布博客 2020.12.23 ·
886 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

【2020/QuASoQ】Evaluating the Impact of Inter Process Communication in Microservice Architectures

论文链接:https://www.researchgate.net/publication/346943854_Evaluating_the_Impact_of_Inter_Process_Communication_in_Microservice_Architectures源码链接:未公布TL;DR现实中微服务系统通过不同的方式来实现进程间的通信 inter process communication (IPC),每种方式都有优缺点和trade-offs,论文中通过不同的实验来对比不同 IPC .
原创
发布博客 2020.12.22 ·
253 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【2019/IJCAI】AddGraph: Anomaly Detection in Dynamic Graph Using Attention-based Temporal GCN

文章链接:https://www.ijcai.org/Proceedings/2019/0614.pdf源码链接:TL;DR论文结合GNN提出了动态图中半监督的边异常检测模型 AddGraph,同时考虑了节点的结构,属性和时序特征。对于标签数据不足的问题,在训练过程中采用了 negative sampling 和 margin loss 两个技巧。在两个真实数据集的实验中取得了较好的效果。Problem Definition论文中的方法主要用于推荐系统中的异常操作检测,举个例子:异常的用户想自.
原创
发布博客 2020.12.17 ·
977 阅读 ·
1 点赞 ·
4 评论 ·
1 收藏

【2015/IE】Variational Autoencoder based Anomaly Detection using Reconstruction Probability

文章链接:Variational Autoencoder based Anomaly Detection using Reconstruction Probability源码链接: https://github.com/Michedev/VAE_anomaly_detection论文总体结构Abstract: 提出了一种基于重构概率的异常检测方法可变自动编码器。IntroductionBackgroud2.1 Anomaly detection:介绍异常检常用几个方法。2.2 Autoe.
原创
发布博客 2020.12.17 ·
2377 阅读 ·
1 点赞 ·
3 评论 ·
17 收藏

基于Graph的Embedding方法概述

文章目录Graph Embedding浅层图模型DeepWalkNode2vecMetapath2vec深度图模型GCNGraphSAGE总结Graph Embedding基于内容的Embedding方法(如word2vec、BERT等)都是针对“序列”样本(如句子、用户行为序列)设计的,但在互联网场景下,数据对象之间更多呈现出图结构,如下图所示 (1) 有用户行为数据生成的物品关系图;(2) 有属性和实体组成的只是图谱。对于图结构数据,基于内容的embedding方法不太好直接处理了。因此,为了解
原创
发布博客 2020.12.05 ·
1784 阅读 ·
3 点赞 ·
0 评论 ·
13 收藏

详解 cron 表达式

cron 表达式cron表达式,主要用于定时作业(定时任务)系统定义执行时间或执行频率的表达式;表达式格式如下:cron = "* * * * * *"* 分别表示 {秒} {分钟} {小时} {日期} {月份} {星期} {年份(可为空)} // {Seconds} {Minutes} {Hours} {DayofMonth} {Month} {DayofWeek}每一个域可出现的字符如下:Seconds:可出现, - * /四个字符,有效范围为0-59的整数;Minutes:可出现, -
原创
发布博客 2020.11.25 ·
464 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多