设计模式的作用、场景以及示例【快速入门,体验拉满,按需使用】 设计模式(Design pattern):是针对设计问题的通用解决方案。使用设计模式:可以把它应用到特定的应用中,用于解决相似的问题。使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性。真正理解什么是设计模式,就是要透彻理解OO的四大要素:封装、继承、多态和关联。其中核心是封装的概念。
Android DataBinding从入门到精通 DataBinding可以更加方便的编写与视图交互的代码。即系统会为模块中的每个xml文件生成一个绑定类,其实例包含指向相应布局中具有ID的所有视图的直接引用。大多数情况下,DataBinding会代替findMyId。
Android Binder机制 与其他的IPC(Interprocess communication,进程通信协议)不同,Binder使用了面向对象的实现来描述作为接入点的Binder和Client的入口。Binder是一个实例(位于Server中的对象),其提供了一套方法用以实现对服务的请求,类似于成员的函数。Client中的入口可以看作指向Binder对象的“指针”,获得该指针即可访问Server。在Client看来,通过Binder“指针”调用其提供的方法和通过指针调用其他的本地对象的方法无区别。
MVVM框架 负责连接View和Model。如上所示,其中,点击事件内的逻辑处理换到了ViewModel内,添加了count的observe()方法,这个方法就是用来观察数据的变化。LiveData是AndroidX中JetPack提供的一种响应式编程组件,可以包含任何数据,并在数据变化的时候通知观察者,以便实现View与Model的数据相绑定。独立于界面,可以在多个界面中共享,用于提供数据和处理数据的方法,封装业务逻辑。如例所示,在ViewModel中可以使用LiveData实现将View与Model绑定的功能。
[实体关系抽取|顶刊论文]PRGC:Potential Relation and Global Correspondence Based Joint Relational Triple Extra 这篇文章,将实体关系抽取,分解成了三部分:1. 抽取潜在关系,减少计算复杂度;2. 对于主语和宾语,使用全连接网络进行抽取出来;3. 列举所有的主宾对,保留超过阈值的三元组对。然后对于保留下来的三元组对,对照主语宾语的标记,保留正确的三元组。个人收获是,在抽取的过程中,可以使用类似这篇文章`索引`的思想。即,先确定某些东西,然后穷举所有排列组合,基于已知的内容再确定结果。
[实体关系抽取|顶会论文]Does it Really Generalize Well on Unseen Data? 它真的能很好地概括看不见的数据吗?关联三重提取方法的系统评价 在这篇文章中,揭露了当前主流模型的对于未曾训练过的数据集的泛化能力不强,作者使用实体噪声方式,强化了模型对于未见数据的泛化能力,同时也保持了对于训练中出现过的三元组识别的泛化能力。所以,对于以后得模型训练可以多多考虑对于泛化能力的提升,或者使用作者提供的数据集进行训练,然后性能再对其他的模型在这个数据集上进行比较,对其他的模型造成降维打击。
[文档级关系抽取|ACL论文]文档级关系抽取中语言理解的基础模型 对于这篇文章,完全揭示了当前文档级关系抽取(甚至句子级关系抽取)的现状,知识把杂七杂八的东西放到了池子中去学习,让模型只能在学习到的数据集中有比较好的效果。基于transformer的预训练语言模型,都希望在给定上下文X的情况下,提高当前单词的概率Y,上下文应该由P(Y|X)表示,但学习的是P(Y|X, A),其中A表示为对采样过程的访问,从而导致有偏差。目前,Y的语义很大程度依赖着有明确语义的词,即U->Y,他们的组合形成了自然的语言表达,其过程可以使用A->X表述,其中A决定了单词在上下文的分布。
ElasticSearch+MongoDB:搜索-关键字联想 目标:从长尾关键词挖掘站长工具智能改写 - 5118营销大数据中获得数据集业务层```java@Autowired MongoTemplate mongoTemplate;/** * 联想词 * @param userSearchDto * @return */@Overridepublic ResponseResult findAssociate(Use...
ElasticSerach+MongoDB:实现文章检索历史功能 实现目标:展示用户的搜索记录10条,按照搜索关键词的时间倒序可以删除搜索记录保存历史记录,保存10条,多余的则删除最久的历史记录数据库的选择:用户的搜索记录,需要给每一个用户都保存一份,数据量较大,要求加载速度快,通常这样的数据存储到mongodb更合适,不建议直接存储到关系型数据库中。与redis对比,MongoDB是结构化数据,而redis中只有keyValue。实...
ElasticSearch:文章检索 实现目标思路与ES前期准备使用postman添加映射put请求 :搜索结果展示内容:标题、布局、枫叶图片、发布时间、作者名称、文章id、作者id、静态url需要对:内容、标题进行分词json"content":{ "type":"text", "ananlyze":"ik_smart"}http://${url}:${port}/appinfoa...
m1MAC使用nginx上传图片至minIO时显示500 Internal Server Error错误解决 在检查网页网络后,发现响应:<html><head><title>500 Internal Server Error</title></head><body><center><h1>500 Internal Server Error</h1></center><h...
[实体关系抽取|顶刊论文]QIDN:基于查询的关系三元组抽取实例判别网络 使用CV中的DETR的query embeddings的思想用于NLP之中,在全局的角度上,把各个关系之间的含义链接了起来,最后,将实例归类,每个类之间的三元组雷同。
JAVA内存区域【一篇文章直接看懂】 对于JAVA程序员种,不像C++一样需要为每个new操作去写del/free代码,但出现内存泄漏和溢出问题时,排查纠正成为了一个难题,因此需要对这部分的知识进行深入学习。
[实体关系抽取|顶刊论文]UniRel:Unified Representation and Interaction for Joint Relational Triple Extraction 2022.11.16|EMNLP 2022|中国科学技术大学 |
[实体关系抽取|顶会论文]CasRel:A Novel Cascade Binary Tagging Framework for Relational Triple Extraction 本文的最大亮点是绕开过去的方法——将关系建模为实体对的离散标记。而是将关系抽象为主语与宾语的函数,进而解决了重叠问题。目前joint方法基本就是魔改各种tag框架和decoding方式。但是,目前还是在概率论知识上有所欠缺,不能理解为什么作者用这些公式,和这些式子的效果。因此还是需要进一步补数理基础与机器学习基础。
[实体关系抽取]TPLinker: Single-stage Joint Extraction of Entities and Relations Through Token Pair Link 2020.10.26|COLING-2020|中国科学院大学|原文链接|源码链接过去的方法:联合学习可以获得明显的性能增益。 然而,它们通常涉及顺序的相互关联的步骤,并遭受暴露偏差的问题。 在训练时,他们根据地面真值条件进行预测,而在推理时,他们必须从头开始提取。 这种差异导致错误积累。论文中的方法:握手标注方法提出了一个单阶段联合提取模型TPLINKER,它能够发现共享一个或两个实体的重叠关系,同时不受暴露偏差的影响过去阶段一:把实体识别和关系抽取完全分离,容易造成级联错误过去阶段二:联合学习整合