求解模线性方程

求解模线性方程组

求解线性不定方程组

ax + by = c

先求出一组解, 然后考虑如何表示通解, 设d = gcd(a, b), 假设c不是d的倍数, 则左边是d的倍数而右边不是, 则方程无解, 所以方程有解当且仅当d | c.

设c = c’ * d, 我们先考虑方程 ax + by = d, 这样由扩展gcd便可求出一组解 (x’, y’), 则(c’x’, c’y’)就是原方程的一组解,然后考虑通解:
假设有两组解(x1, y2) , (x2, y2), 有 ax1 + by1 == ax2 + by2 = c, 移项得: a(x1 - x2) == b(y2 - y1), 消去d后有 a’(x1 - x2) == b’(y2 - y1),
此时a’ 和 b’ 互素, 所以(x1 - x2)一定是b’的倍数, 而(y2 - y1)一定是a’的倍数, 由此可得到通解:给一组特解(x, y), 通解为(x - kb’, y + ka’).

求解模线性方程

ax = b(mod n)

其实方程等价于 ax - ny = b, 标准模线性方程,但是得考虑剩余系。

算法导论上有两个定理:

定理一:设d = gcd(a, n), 假定对整数x’, y’, 有d = ax’ + ny’, 如果d | b, 则方程ax = b(mod)有一个解的值为x0, 满足:、

x0 = x'(b / d)(mod n)

定理二:假设方程ax = b(mod n)有解, x0是方程的任意一个解, 则方程对模n恰有d个不同的解, 分别为: xi = x0 + i * (n / d), 其中 i = 1,2,3……d - 1

有了这两个定理, 解方程就不难了。

代码实现

扩展欧几里得算法
ll exgcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    ll r=exgcd(b,a%b,x,y);
    ll t=x;
    x=y;
    y=t-a/b*y;
    return r;
}
求解模线性方程求的的只是一组解给一组特解(x, y), 通解为(x - kb’, y + ka’).改代码返回满足x>0&&y>0的最小解。
bool linear_equation(ll a,ll b,ll c,ll &x,ll &y)
{
    ll d=exgcd(a,b,x,y);
    if(c%d)
        return false;
    ll k=c/d;
    x*=k; y*=k;    //求得的只是其中一组解
    ll b1 = b/d;
    ll a1 = a/d;
    ll i = 0;

    //cout<<x<<" "<<y<<endl;
    if(y<0){
        while (y<=0){
            y+=a1;
            x-=b1;

        }
    }
    while (y-a1>=0){
        y-=a1;
        x+=b1;
    }
    if(y>=0&&x>=0){
        return true;
    } else{
        return false;
    }

}

中国剩余定理求解模线性方程组

互质版本

中国剩余定理是中国古代求解一次同余方程组的方法,是数论中的一个重要定理。
设m1,m2,m3,…,mk是两两互素的正整数,即gcd(mi,mj)=1,i!=j,i,j=1,2,3,…,k.
则同余方程组:

x = a1 (mod n1)

x = a2 (mod n2)

x = ak (mod nk)

模[n1,n2,…nk]有唯一解,即在[n1,n2,…,nk]的意义下,存在唯一的x,满足:

x = ai mod [n1,n2,…,nk], i=1,2,3,…,k。

解可以写为这种形式:
x = sigma(ai* mi*mi’) mod(N)
 
其中N=n1*n2*…*nk,mi=N/ni,mi’为mi在模ni乘法下的逆元。

非互质版本采用方程合并的思想

img

        //
// Created by 王若璇 on 16/7/11.
//
//中国剩余定理,非互质版本
#include <iostream>
#include <cmath>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){
    return b==0?a:gcd(b,a%b);
}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    ll r=exgcd(b,a%b,x,y);
    ll t=x;
    x=y;
    y=t-a/b*y;
    return r;
}
ll cal(ll a,ll m){
    ll x,y;
    ll r = exgcd(a,m,x,y);
    if(1%r!=0){
        return -1;
    }
    //x*=1/r;
    //m = abs(m);

    ll ans = (x%m+m)%m;
    //if(ans<=0) ans+=m;
    return ans;
}
bool merge(ll a1,ll r1,ll a2,ll r2,ll &aa,ll &rr){
    ll d = gcd(a1,a2);
    ll c = r2-r1;
    if(c%d!=0){
        return false;
    }
    c = (c%a2+a2)%a2;
    c/=d;
    a1/=d;
    a2/=d;
    c*=cal(a1,a2);
    c = c%a2;
    c*=a1*d;
    c+=r1;
    aa = a1*a2*d;
    rr = c;
    return true;
}

int main(){
    ios::sync_with_stdio(false);
    cin.tie(NULL);
    int n;
    while (cin>>n){
        ll k,m;
        cin>>k>>m;
        bool flag = true;
        ll a,r,aa,rr;
        for(int i = 1;i<n;i++){
            cin>>a>>r;
            if(flag&&merge(k,m,a,r,aa,rr)){
                k = aa;
                m = rr;
            } else{
                flag = false;
            }
        }
        if(flag){
            cout<<(rr%aa+aa)%aa<<endl;
        } else{
            cout<<-1<<endl;
        }

    }

    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值