大模型原理剖析——拆解预训练、微调、奖励建模与强化学习四阶段(以ChatGPT构建流程为例)

2025博客之星年度评选已开启 10w+人浏览 1.7k人参与

前言

大语言模型(如ChatGPT)的“智能”并非一蹴而就,而是通过分阶段的精细化训练逐步实现的。本文基于课程内容,拆解ChatGPT的四阶段构建流程,解析每个环节的核心逻辑与技术细节。
在这里插入图片描述

一、阶段一:自监督预训练——给模型“打知识底子”

这是大模型的基础能力奠基阶段,核心是让模型学习语言规律与世界知识。

  • 核心思路:利用文本的前k个词(token),预测第k+1个词,实现“自监督学习”(无需人工标注标签)。
  • 训练数据:覆盖互联网网页、维基百科、书籍、GitHub代码、论文等多源语料,总量达数千亿至数万亿单词,确保内容的多样性与知识覆盖度。
  • 训练目标:最大化预测概率,数学表达为:
    Max∑ilog⁡P(ui∣ui−k,...,ui−1;θ)\text{Max} \sum_{i} \log P(u_i|u_{i-k}, ..., u_{i-1}; \theta)MaxilogP(uiuik,...,ui1;θ)
    (其中uiu_iui是语料中的词,θ\thetaθ是模型参数)
  • 输出与资源:得到“基础模型”,需1000+GPU/月的训练资源。

二、阶段二:有监督微调(指令微调)——让模型“听懂人类指令”

预训练模型能“续写文本”,但还不懂“指令”;这一阶段的目标是让模型理解人类需求。

  • 核心逻辑:在预训练模型的基础上,用 “用户指令+理想输出”的标注数据 继续训练。
  • 训练数据:数万级标注用户指令+对应高质量输出,聚焦开放问题、阅读理解、代码生成等场景。
  • 能力提升:模型具备初步的指令理解能力,能完成开放领域问答、翻译、代码编写,还能泛化到未知任务。
  • 输出与资源:得到“SFT模型(有监督微调模型)”,需1-100GPU/天的训练资源。

三、阶段三:奖励建模——给模型“立评价标准”

这一阶段的核心是构建“文本质量评估体系”,为后续优化提供“奖励信号”。

  • 核心目标:训练一个“奖励模型(RM)”,用于评估SFT模型输出内容的质量高低。
  • 训练方式:人工标注百万级样本——将同一个指令输入SFT模型得到多个输出,由标注人员对这些输出按质量排序,以此训练RM模型。
  • 作用:RM模型会成为后续强化学习的“裁判”,为模型的输出打分。
  • 输出与资源:得到“RM模型(奖励模型)”,需1-100GPU/天的训练资源。

四、阶段四:强化学习——让模型“越答越贴合需求”

这是ChatGPT的最终优化阶段,核心是用奖励信号让模型持续迭代。

  • 核心流程
    1. 输入十万级用户指令,让SFT模型生成输出;
    2. 用RM模型对输出打分(即“奖励”);
    3. 根据奖励结果调整SFT模型的参数,让模型更倾向于生成高分内容。
  • 最终输出:经过此阶段训练后,得到最终的ChatGPT模型。
  • 资源需求:需1-100GPU/天的训练资源。

总结:ChatGPT构建的“四步逻辑”

ChatGPT的训练是一个“从基础到优化”的递进过程:

  1. 预训练:学语言、攒知识 → 基础模型;
  2. 有监督微调:学指令、懂需求 → SFT模型;
  3. 奖励建模:定标准、做裁判 → RM模型;
  4. 强化学习:靠反馈、迭代优 → ChatGPT。

各阶段的数据规模、算法类型、计算资源需精准匹配,才能最终实现模型的“智能表现”。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾醒(AiXing-w)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值