题目
你要开发一座金矿,地质勘测学家已经探明了这座金矿中的资源分布,并用大小为 m * n 的网格 grid 进行了标注。每个单元格中的整数就表示这一单元格中的黄金数量;如果该单元格是空的,那么就是 0。
为了使收益最大化,矿工需要按以下规则来开采黄金:
-
每当矿工进入一个单元,就会收集该单元格中的所有黄金。
-
矿工每次可以从当前位置向上下左右四个方向走。
-
每个单元格只能被开采(进入)一次。
-
不得开采(进入)黄金数目为 0 的单元格。
-
矿工可以从网格中 任意一个 有黄金的单元格出发或者是停止。
示例 1:
输入:grid = [[0,6,0],[5,8,7],[0,9,0]]
输出:24
解释:
[[0,6,0],
[5,8,7],
[0,9,0]]
一种收集最多黄金的路线是:9 -> 8 -> 7。
示例 2:
输入:grid = [[1,0,7],[2,0,6],[3,4,5],[0,3,0],[9,0,20]]
输出:28
解释:
[[1,0,7],
[2,0,6],
[3,4,5],
[0,3,0],
[9,0,20]]
一种收集最多黄金的路线是:1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7。
提示:
1 <= grid.length, grid[i].length <= 15
0 <= grid[i][j] <= 100
最多 25 个单元格中有黄金。
解释和代码
第一眼感觉就是dfs
注意题意,可以从网格中 任意一个
有黄金的单元格出发或者是停止
没什么难度,就是直接模拟即可,注意边界
网上代码都差不多的样子
class Solution {
public:
int maxv = 0, tsum = 0;
int dx[4] = {0, 0, 1, -1};
int dy[4] = {1, -1, 0, 0};
void dfs(int tx, int ty, vector<vector<int>>& grid) {
if (tx < 0 || ty < 0 || tx >= grid.size() || ty >= grid[0].size() || grid[tx][ty] == 0) return ;
int temp = grid[tx][ty];
tsum += temp;
maxv = max(maxv, tsum);
grid[tx][ty] = 0;
for (int i=0; i<4; i++) {
int px = tx + dx[i];
int py = ty + dy[i];
dfs(px, py, grid);
}
grid[tx][ty] = temp;
tsum -= temp;
}
int getMaximumGold(vector<vector<int>>& grid) {
for (int i=0; i<grid.size(); i++)
for (int j=0; j<grid[i].size(); j++)
if (grid[i][j] != 0)
dfs(i, j, grid);
return maxv;
}
};