力扣 1219黄金矿工

131 篇文章 0 订阅
这篇博客介绍了一个关于金矿开采的问题,矿工需要遵循特定规则以最大化黄金收集。博主提供了一种解决方案,即通过深度优先搜索(DFS)算法遍历网格并收集黄金。示例展示了如何应用该算法找到最优路径,并给出了相应的代码实现。
摘要由CSDN通过智能技术生成

题目

你要开发一座金矿,地质勘测学家已经探明了这座金矿中的资源分布,并用大小为 m * n 的网格 grid 进行了标注。每个单元格中的整数就表示这一单元格中的黄金数量;如果该单元格是空的,那么就是 0。

为了使收益最大化,矿工需要按以下规则来开采黄金:

  • 每当矿工进入一个单元,就会收集该单元格中的所有黄金。

  • 矿工每次可以从当前位置向上下左右四个方向走。

  • 每个单元格只能被开采(进入)一次。

  • 不得开采(进入)黄金数目为 0 的单元格。

  • 矿工可以从网格中 任意一个 有黄金的单元格出发或者是停止。

示例 1:

输入:grid = [[0,6,0],[5,8,7],[0,9,0]]
输出:24
解释:
[[0,6,0],
[5,8,7],
[0,9,0]]
一种收集最多黄金的路线是:9 -> 8 -> 7。
示例 2:

输入:grid = [[1,0,7],[2,0,6],[3,4,5],[0,3,0],[9,0,20]]
输出:28
解释:
[[1,0,7],
[2,0,6],
[3,4,5],
[0,3,0],
[9,0,20]]
一种收集最多黄金的路线是:1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7。

提示:

1 <= grid.length, grid[i].length <= 15
0 <= grid[i][j] <= 100
最多 25 个单元格中有黄金。

解释和代码

第一眼感觉就是dfs

注意题意,可以从网格中 任意一个 有黄金的单元格出发或者是停止

没什么难度,就是直接模拟即可,注意边界

网上代码都差不多的样子

class Solution {
public:
    int maxv = 0, tsum = 0;
    int dx[4] = {0, 0, 1, -1};
    int dy[4] = {1, -1, 0, 0};
    
    void dfs(int tx, int ty, vector<vector<int>>& grid) {
        if (tx < 0 || ty < 0 || tx >= grid.size() || ty >= grid[0].size() || grid[tx][ty] == 0) return ;
        int temp = grid[tx][ty];
        tsum += temp;
        maxv = max(maxv, tsum);
        grid[tx][ty] = 0;
        for (int i=0; i<4; i++) {
            int px = tx + dx[i];
            int py = ty + dy[i];
            dfs(px, py, grid);
        }
        grid[tx][ty] = temp;
        tsum -= temp;
    }
    
    int getMaximumGold(vector<vector<int>>& grid) {
        for (int i=0; i<grid.size(); i++) 
            for (int j=0; j<grid[i].size(); j++) 
                if (grid[i][j] != 0)
                    dfs(i, j, grid);
        return maxv;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值