Duncan_yitong
码龄8年
关注
提问 私信
  • 博客:8,654
    8,654
    总访问量
  • 2
    原创
  • 362,435
    排名
  • 5
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2017-04-07
博客简介:

Duncan_yitong的博客

查看详细资料
个人成就
  • 获得13次点赞
  • 内容获得5次评论
  • 获得24次收藏
  • 代码片获得268次分享
创作历程
  • 1篇
    2021年
  • 3篇
    2019年
成就勋章
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Exception in thread “main“ java.lang.NoClassDefFoundError: javax/xml/bind/DatatypeConverter

1.问题描述在一个Maven项目中报错:Exception in thread "main" java.lang.NoClassDefFoundError: javax/xml/bind/DatatypeConverter这是因为javax.xml.bind包在JDK8以上的版本被移除,而我用的是JDK9,所以需要更改JDK版本(不推荐)或者手动引入。2.解决方法方法一、下载javax.xml.bind.jar包,点击IDEA右上角图标打开Project Structure->Libra
原创
发布博客 2021.04.19 ·
5334 阅读 ·
11 点赞 ·
5 评论 ·
12 收藏

javax.xml.bind.jar

发布资源 2021.04.19 ·
jar

PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning 翻译

PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive LearningAbstract提出了一种用于时空预测学习的递归网络PredRNN++。为了追求短期视频动态的强大建模能力,我们利用一种新的循环结构,称为因果LSTM和级联双记忆,使我们的网络在时间上更深入。为了缓解深...
翻译
发布博客 2019.12.22 ·
1362 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Sequence to Sequence Learning with Neural Networks,从RNN开始

Sequence to Sequence Learning with Neural Networks,从RNN开始***Sequence to Sequence Learning with Neural Networks***这篇文章是Google在2014年发表的较早的使用了Seq2Seq结构的文章,实现了从输入序列映射到不等长的输出序列的学习,在机器翻译的任务中,取得了非常好的成绩。作者首先...
原创
发布博客 2019.11.26 ·
1246 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

A Critical Review of Recurrent Neural Networks for Sequence Learning

Abstract很多学习任务需要输入(时间序列预测、视频分析和音乐信息检索)或输出(图像字幕、语音合成和视频游戏)序列,或两者兼具(自然语言翻译、参与对话和机器人控制等交互式任务)。循环神经网络可以反映任意长度的上下文窗口,但循环神经网络包含上百万参数难以训练。近期网络结构、技术优化与并行计算的进步使循环神经网络的大规模学习成为可能。在过去的几年里,基于最先进的长短时记忆(LSTM)和双向递...
翻译
发布博客 2019.10.28 ·
671 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏