一、引言
极验图标点选验证码通过动态生成的随机图片(如下图所示)

要求用户按提示顺序点击目标图标。这种验证方式结合了空间推理、语义理解和动态干扰技术,有效抵御机器识别。
二、验证码特征与难点
1、核心特征
动态布局:每次刷新生成随机图标位置和干扰项
语义关联:图标与功能语义绑定
多模态干扰:自然风景/水面背景/建筑物背景等构成视觉干扰层
2、识别难点
图标相似度高达90%,需精准分割边缘
背景纹理与图标边缘模糊,传统二值化失效
移动端小屏幕下误触率提升30%
三、识别代码
1、原图识别要求
原图是通过图片链接下载的图片,具有标准的大小
原图一共有4张图片,一张背景大图(图片大小300×200),三张顺序点击小图(图片大小60×60)

(大图)



(小图)
2、识别代码
把下面代码中的图片路径换成自己的就可以进行测试效果。
import base64
import requests
import datetime
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont
t1 = datetime.datetime.now()
#PIL图片保存为base64编码
def PIL_base64(img, coding='utf-8'):
img_format = img.format
if img_format == None:
img_format = 'JPEG'
format_str = 'JPEG'
if 'png' == img_format.lower():
format_str = 'PNG'
if 'gif' == img_format.lower():
format_str = 'gif'
if img.mode == "P":
img = img.convert('RGB')
if img.mode == "RGBA":
format_str = 'PNG'
img_format = 'PNG'
output_buffer = BytesIO()
# img.save(output_buffer, format=format_str)
img.save(output_buffer, quality=100, format=format_str)
byte_data = output_buffer.getvalue()
base64_str = 'data:image/' + img_format.lower() + ';base64,' + base64.b64encode(byte_data).decode(coding)
return base64_str
# 加载图片
img1 = Image.open(r'E:\Python\lixin_project\OpenAPI接口测试\test_img\81-1.jpg')
img2 = Image.open(r'E:\Python\lixin_project\OpenAPI接口测试\test_img\81-2.jpg')
img3 = Image.open(r'E:\Python\lixin_project\OpenAPI接口测试\test_img\81-3.jpg')
img4 = Image.open(r'E:\Python\lixin_project\OpenAPI接口测试\test_img\81-4.jpg')
# 图片转base64
img1_base64 = PIL_base64(img1)
img2_base64 = PIL_base64(img2)
img3_base64 = PIL_base64(img3)
img4_base64 = PIL_base64(img4)
验证码识别接口
可以根据自己网络情况选择不同接口
http://bq1gpmr8.xiaomy.net(电信)
http://220.167.181.200:9009(移动、电信、联通)
url = "http://220.167.181.200:9009/openapi/verify_code_identify/"
data = {
# 用户的key
"key":"6tOcnv0zvFDnOv8FS7M4",
# 验证码类型
"verify_idf_id":"81",
# 大图
"img1": img1_base64,
# 小图1(顺序决定点击顺序)
"img2": img2_base64,
# 小图2(顺序决定点击顺序)
"img3": img3_base64,
# 小图3(顺序决定点击顺序)
"img4": img4_base64,
}
header = {"Content-Type": "application/json"}
# 发送请求调用接口
response = requests.post(url=url, json=data, headers=header)
# 获取响应数据,识别结果
print(response.text)
print("耗时:", datetime.datetime.now() - t1)
# 点击位置可视化展示部分
img1 = img1.convert("RGB")
draw = ImageDraw.Draw(img1)
point_list = [(x[0] - 15, x[1] - 15, x[0] + 15, x[1] + 15) for x in eval(response.json()['data']['res_str'])]
# 字体设置
font_type = "./msyhl.ttc"
font_size = 20
font = ImageFont.truetype(font_type, font_size)
for i, point in enumerate(point_list):
draw.ellipse(point, fill=(255, 0, 0))
draw.text((point[0] + 10, point[1] + 2), str(i + 1), fill=(255, 255, 255), font=font)
img1.show()
运行上面代码的效果如下,会标记具体的点击位置,如下图所示

想了解更多验证码识别,请访问:http://bq1gpmr8.xiaomy.net/tool/verifyCodeHomePage2/?_=1758791786084
706

被折叠的 条评论
为什么被折叠?



