极验最新图标点选识别

 一、引言

极验图标点选验证码通过动态生成的随机图片(如下图所示)

要求用户按提示顺序点击目标图标。这种验证方式结合了空间推理、语义理解和动态干扰技术,有效抵御机器识别。

二、验证码特征与难点

1、核心特征

动态布局:每次刷新生成随机图标位置和干扰项

语义关联:图标与功能语义绑定

多模态干扰:自然风景/水面背景/建筑物背景等构成视觉干扰层

2、识别难点

图标相似度高达90%,需精准分割边缘

背景纹理与图标边缘模糊,传统二值化失效

移动端小屏幕下误触率提升30%

三、识别代码

1、原图识别要求

原图是通过图片链接下载的图片,具有标准的大小

原图一共有4张图片,一张背景大图(图片大小300×200),三张顺序点击小图(图片大小60×60)

(大图)

(小图)

2、识别代码

把下面代码中的图片路径换成自己的就可以进行测试效果。


import base64
import requests
import datetime
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont

t1 = datetime.datetime.now()

#PIL图片保存为base64编码
def PIL_base64(img, coding='utf-8'):
    img_format = img.format
    if img_format == None:
        img_format = 'JPEG'

    format_str = 'JPEG'
    if 'png' == img_format.lower():
        format_str = 'PNG'
    if 'gif' == img_format.lower():
        format_str = 'gif'

    if img.mode == "P":
        img = img.convert('RGB')
    if img.mode == "RGBA":
        format_str = 'PNG'
        img_format = 'PNG'

    output_buffer = BytesIO()
    # img.save(output_buffer, format=format_str)
    img.save(output_buffer, quality=100, format=format_str)
    byte_data = output_buffer.getvalue()
    base64_str = 'data:image/' + img_format.lower() + ';base64,' + base64.b64encode(byte_data).decode(coding)

    return base64_str

# 加载图片
img1 = Image.open(r'E:\Python\lixin_project\OpenAPI接口测试\test_img\81-1.jpg')
img2 = Image.open(r'E:\Python\lixin_project\OpenAPI接口测试\test_img\81-2.jpg')
img3 = Image.open(r'E:\Python\lixin_project\OpenAPI接口测试\test_img\81-3.jpg')
img4 = Image.open(r'E:\Python\lixin_project\OpenAPI接口测试\test_img\81-4.jpg')
# 图片转base64
img1_base64 = PIL_base64(img1)
img2_base64 = PIL_base64(img2)
img3_base64 = PIL_base64(img3)
img4_base64 = PIL_base64(img4)

验证码识别接口
可以根据自己网络情况选择不同接口
http://bq1gpmr8.xiaomy.net(电信)
http://220.167.181.200:9009(移动、电信、联通)

url = "http://220.167.181.200:9009/openapi/verify_code_identify/"
data = {
    # 用户的key
    "key":"6tOcnv0zvFDnOv8FS7M4",
    # 验证码类型
    "verify_idf_id":"81",
    # 大图
    "img1": img1_base64,
    # 小图1(顺序决定点击顺序)
    "img2": img2_base64,
    # 小图2(顺序决定点击顺序)
    "img3": img3_base64,
    # 小图3(顺序决定点击顺序)
    "img4": img4_base64,
}
header = {"Content-Type": "application/json"}

# 发送请求调用接口
response = requests.post(url=url, json=data, headers=header)

# 获取响应数据,识别结果
print(response.text)
print("耗时:", datetime.datetime.now() - t1)

# 点击位置可视化展示部分
img1 = img1.convert("RGB")
draw = ImageDraw.Draw(img1)
point_list = [(x[0] - 15, x[1] - 15, x[0] + 15, x[1] + 15) for x in eval(response.json()['data']['res_str'])]
# 字体设置
font_type = "./msyhl.ttc"
font_size = 20
font = ImageFont.truetype(font_type, font_size)
for i, point in enumerate(point_list):
    draw.ellipse(point, fill=(255, 0, 0))
    draw.text((point[0] + 10, point[1] + 2), str(i + 1), fill=(255, 255, 255), font=font)
img1.show()

运行上面代码的效果如下,会标记具体的点击位置,如下图所示

想了解更多验证码识别,请访问:http://bq1gpmr8.xiaomy.net/tool/verifyCodeHomePage2/?_=1758791786084

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

detayun

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值