自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

dejahu的博客

愿你一生欢喜,不为世俗所及。

  • 博客(194)
  • 收藏
  • 关注

原创 【大作业-19】使用YOLOv8进行头盔佩戴检测

头盔检测是计算机视觉领域中的一个重要应用,主要用于检测图像或视频中的人是否佩戴头盔。头盔在工业生产、建筑工地、交通领域(如摩托车和自行车骑行)以及一些高危作业场景中是必不可少的防护装备。佩戴头盔可以有效保护头部,降低因意外事故导致的伤亡风险。然而,在现实生活中,很多人并未遵守佩戴头盔的规定,导致事故发生时的伤害严重程度加剧。因此,自动化的头盔检测系统可以帮助相关部门或企业监督和管理这一安全措施的执行。随着深度学习和计算机视觉技术的飞速发展,基于图像的目标检测技术得到了广泛的应用。

2024-08-26 22:10:38 4428

原创 30 Days Of Python教程索引

【代码】30 Days Of Python教程索引。

2024-08-25 23:47:57 787

原创 图灵奖获得者杰夫·辛顿(Geoffrey Hinton)介绍

杰弗里·埃弗里斯特·辛顿(Geoffrey Everest Hinton)国籍:加拿大、英国出生日期:1947年12月6日出生地:英国温布尔登职业:教育科研工作者主要成就:2018年获得图灵奖,1998年当选为英国皇家学会院士,1996年当选为加拿大皇家学会院士,2023年当选为美国国家科学院外籍院士教育背景1970年,获得剑桥大学实验心理学学士学位。1978年,获得爱丁堡大学人工智能学博士学位。职业经历1976年至1978年,担任苏塞克斯大学认知科学研究项目研究员。

2024-08-22 17:51:02 2220

原创 【小样本图像分割-4】nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation

nnU-Net 中的nn分别表示no和new,这个网络不能算作是小样本的医学图像分割方法,但是可以作为一种自适应的医学图像分割方法。该方法能够根据数据集的内容自动的修改模型的超参数,让你的unet模型更加适配你的数据集,从而可以得到一个比较sota的模型。这里作者实践出真知,在比赛中提供了10个数据集上都拿到了不错的成绩,并且这个模型中使用的一些tricks在后续的比赛中都可以借鉴。U-Net于2015年推出。凭借其简单而成功的架构,它迅速发展成为医学图像分割中常用的基准。

2024-08-21 18:04:30 917

原创 【Medical Images-1】医学图像中常见的数据格式

医学图像是一个比较热门的话题,并且也是我个人比较感兴趣的一个方向。我们这边设置一个专栏,主要用来阐述医学图像中常见的深度学习方法,前面主要围绕2d图像来展开,后面则主要围绕3d图像来展开,方向方面我们主要侧重于对图像的分割。OK,今天我们来看的医学图像处理中常见的数据格式。医学图像常见的数据格式多种多样,每种格式都有其特定的应用场景和优势。

2024-08-21 16:50:25 974

原创 使用 NVIDIA TAO Toolkit 5.0 体验最新的视觉 AI 模型开发工作流程

NVIDIA TAO 工具套件提供了一个低代码 AI 框架,让无论是新手还是数据科学专家都可以使用这个平台加速视觉 AI 模型开发。通过 NVIDIA TAO 工具套件,开发人员可以进行迁移学习,通过适应和优化,在短时间内达到最先进的精度和生产级吞吐量。在 NVIDIA GTC23 上,NVIDIA 发布了 NVIDIA TAO 套件 5.0 ,带来了 AI 模型开发方面的突破性功能提升。新功能包括开源架构、基于 Transformer 的预训练模型、AI 辅助的数据标注,以及在任何平台上部署模型的能力。

2024-08-19 15:23:46 858

原创 NVIDIA Ampere 架构的结构化稀疏功能及其在搜索引擎中的应用

NVIDIA Ampere 架构中的结构化稀疏功能可以加速许多深度学习工作负载,并且易于结合 TensorRT 和 cuSPARSELt 稀疏加速库一起使用。

2024-08-19 15:17:35 1383

原创 使用YOLOv8训练自己的数据集(原理解析+数据标注说明+训练教程+图形化系统开发)

Hello,大家好,本次我们来教大家使用YOLOV8训练自己的数据集。YOLO系列目前已经更新到了V10,并且YOLO系列模型已经目前稳定运行了一段时间。经过一段时间的准备,我们选择在暑期的这个时间点更新YOLOV8模型的教程,从原理、数据标注和环境配置一一展开讲解,帮助小伙伴们掌握YOLOv8的基本内容。注意本次的教程除了支持v8模型的训练,还适用v3、v5、v9、v10等一系列模型的训练。为了帮助大家能灵活选择自己喜欢的内容,我们选择分P的方式进行更新。

2024-08-19 11:28:26 21066 63

原创 【小样本图像分割-3】HyperSegNAS: Bridging One-Shot Neural Architecture Search

由于物体(如器官或肿瘤)的形状和模式的高度可变性,3d医学图像的语义分割是一项具有挑战性的任务。鉴于最近深度学习在医学图像分割方面的成功,神经架构搜索(NAS)被引入来寻找高性能的3D分割网络架构。然而,由于三维数据的大量计算需求和架构搜索的离散优化特性,以往的NAS方法需要较长的搜索时间或必要的连续松弛,并且通常会导致次优网络架构。虽然一次性NAS可以潜在地解决这些缺点,但在广泛的多尺度多路径搜索空间中,其在分割领域的应用尚未得到很好的研究。

2024-08-17 15:31:11 684

原创 【小样本图像分割-2】UniverSeg: Universal Medical Image Segmentation

虽然深度学习模型已经成为医学图像分割的主要方法,但它们通常无法推广到涉及新解剖结构、图像模式或标签的未知分割任务。对于新的分割任务,研究人员通常必须训练或微调模型,这既耗时又给临床研究人员带来了巨大的障碍,因为他们往往缺乏训练神经网络的资源和专业知识。我们提出了UniverSeg,一种无需额外训练即可解决看不见的医学分割任务的方法。给定一个查询图像和图像标签对的示例集来定义一个新的分割任务,UniverSeg采用一种新的CrossBlock机制来生成准确的分割映射,而不需要额外的训练。

2024-08-15 11:32:01 1031

原创 遥感语义分割数据集中的切图策略

【代码】遥感语义分割数据集中的切图策略。

2024-08-14 09:33:58 424

原创 AI训练电脑配置备份-自用

平时看配置基本也是按照B站的UP主推荐的来配置其中显卡的部分自己使用的是3060,平常打游戏和跑程序都够用,CPU的话基本也是intel使用的比较多,因为感觉intel对各种程序的适配更好。下面列举的是平时看的比较多的UP主推荐的配置,对应的视频也放在上面。

2024-08-14 00:00:05 547

原创 【小样本图像分割-1】PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment

尽管深度cnn在图像语义分割方面取得了很大的进步,但它们通常需要大量密集标注的图像进行训练,并且难以推广到看不见的对象类别。因此,开发了少量镜头分割,以学习仅从几个注释示例中执行分割。本文从度量学习的角度解决了具有挑战性的少镜头分割问题,并提出了一种新的原型对准网络PANet,以更好地利用支持集的信息。我们的PANet从嵌入空间内的一些支持图像中学习特定于类的原型表示,然后通过将每个像素与学习到的原型进行匹配,对查询图像进行分割。

2024-08-13 23:58:43 1557

原创 NVIDIA Triton系列13-用 FasterTransformer 和 Triton 加速大型 Transformer 模型的推理

由于较少的数据传输量和所需的内存,这两种机制都允许加速。Triton 稳定且快速,允许您使用准备好的 Docker 容器以简单的方式运行 ML/DL 模型的推理,该容器仅使用一行代码和简单的类似 JSON 的配置。具有数千亿参数的大型基于 Transformer 的模型的行为就像一个巨大的百科全书和大脑,其中包含有关它所学到的一切的信息。FasterTransformer 库使用此参数对所有底层算法进行实时基准测试,并为模型的参数和您的输入数据(注意层的大小、注意头的数量、隐藏层的大小)选择最佳的一个。

2024-08-12 23:56:02 741

原创 ICASSP2025重要时间节点

*这 50第IEEE声学、语音和信号处理国际会议 (ICASSP)**将于在印度海得拉巴海得拉巴国际会议中心举行。IEEE信号处理学会的旗舰会议将提供全面的技术计划,展示信号处理研究和应用的最新发展。该会议以世界一流的口头和海报会议、主题演讲、展览、演示、教程和短期课程为特色,将吸引领先的研究人员和全球行业人士,提供绝佳的交流机会。杰出的论文和贡献者将在ICASSP 2025上被评选和表彰。

2024-08-12 16:35:57 8222

原创 NVIDIA Triton系列12-模型与调度器2

(2) 模型 classification_model 的输入为 preprocessed_image,表示这个模型的工作是在 image_preprocess_model 之后的任务,执行的推理输出为 CLASSIFICATION;由于集成模型将继承所涉及模型的特性,因此在请求起点的元数据(本例为“IMAGE”)必须符合集成中的模型,如果其中一个模型是有状态模型,那么集成模型的推理请求应该包含有状态模型中提到的信息,这些信息将由调度器提供给有状态模型。将新收集的张量映射到集合中模型的输入。

2024-08-11 17:21:53 517

原创 【CVDEBUG-1】- 页面文件太小,无法完成操作怎么办

写在前面:我们陆陆续续录了很多大作业系列,但是在好兄弟们执行的途中,可能会出现各种各样的小BUG,导致无法再进行下去,这里我开一期专栏,专门记录大家在执行过程中遇到的小BUG以及解决措施,如果大家有什么其他各种莫名其妙的BUG都可以在这里留言。一般情况下,C盘是你的系统盘,虚拟内存的策略大概是从你的系统盘中分配部分的硬件空间作为内存来使用,如果你的C盘容量比较小,可能导致模型无法加载或者是训练的数据无法加载。ok,这个时候,重启电脑,然后再去执行你的训练程序,基本就不会出现这里的错误了。

2024-08-11 13:41:24 494

原创 NVIDIA Triton系列11-模型类别与调度器-1

模型可以使用请求中的开始标志来检测新序列的开始,并通过在模型输出中提供初始状态来初始化模型状态,如果模型状态描述中的 dims 部分包含可变尺度,则 Triton 在开始请求时将每个可变尺寸设置为“1”。这是 Triton 默认的模型模式,最主要的要求就是“模型所维护的状态不跨越推理请求”,也就是不存在与其他推理请求有任何交互关系,大部分处于最末端的独立推理模型,都适合使用这种模式,例如车牌检测最末端的将图像识别成符号的推理、为车辆识别颜色/种类/厂牌的图像分类等,还有。

2024-08-10 16:52:10 1161

原创 NVIDIA Triton系列10-模型并发执行

这个资源主要指的是 GPU 的显存调用,因为数据在 CPU 与 GPU 之间的交换传输,经常在整个计算环节中造成很大的影响,如果当我们需要对同一组数据进行不同的计算,或者计算过程中有流水线前后关系的话,那么将这些需要重复使用的数据保留在 GPU 显存上,就能非常有效减少数据传输次数,进而提升计算效率。的参数,这样就允许一个 GPU 上可以并发三个实例的模型计算,如果用户端发出超过 3 个推理请求时,则第 4 个 model 1 推理请求就必须等到前三个实例中的任一个执行完之后,才能开始执行。

2024-08-10 16:48:50 866

原创 【大作业-17】使用TensorFlow快速实现图像风格迁移系统

摘要的部分:作者探讨了图像转换问题,即如何将输入图像转换成输出图像。以往的方法通常训练前馈卷积神经网络,使用逐像素损失函数来衡量输出图像和真实图像之间的差异。但是,这些方法并没有捕捉到图像之间的感知差异。与此同时,也有研究通过定义和优化基于预训练网络提取的高级特征的感知损失函数来生成高质量图像。本文结合了这两种方法的优点,提出使用感知损失函数来训练图像转换任务的前馈网络。实验结果表明,在风格迁移任务中,与基于优化的方法相比,所提出的网络在生成相似质量结果的同时,速度快了三个数量级。

2024-08-09 21:24:04 1813

原创 NVIDIA Triton系列09-为服务器添加模型

输出节点的张量尺度(如“dims: [ 1001 ]”),表示模型生成的输出张量的形状,并由 Triton 服务器响应推断请求返回。这里的可以是任何字符串、则对应到输入或输出顺序的整数,例如模型有两个输入节点与两个输出节点时,可以用“INPUT_0”与“INPUT_1”代表两个输入节点、用“OUTPUT_0”与“OUTPUT_1”代表两个输出节点。输入的名称映射到该特定张量的字符串“key”值,例如“A”或“B”,其中输入“A”是指对应于 tensor1 的值、“B”是指对应于 tensor2 的值。

2024-08-08 22:50:42 1074

原创 CVPR2024 医学图像相关论文

我们提出了一种新颖的超声心动图视频分割模型,该模型通过将分割任意掩码(SAM)技术应用于医学视频,以解决超声视频分割领域长期存在的一些挑战,包括(1)大量的斑点噪声和伪影,(2)极其模糊的边界,以及(3)帧间目标对象的大幅变化。我们模型的核心技术是一种具有时间感知和抗噪能力的提示方案。具体而言,我们采用了一种包含空间和时间信息的时空记忆体,来提示当前帧的分割,因此我们称该模型为MemSAM。在提示过程中,携带时间线索的记忆体按顺序逐帧提示视频分割。

2024-08-08 13:01:52 2837

原创 NVIDIA Triton系列08-用户端其他特性

以上就是 Triton 用户端会用到的基本功能,不过缺乏足够的说明文件,因此其他功能函数的内容必须自行在开源文件内寻找,像 C++ 版本的功能得在 src/c++/library 目录下的 common.h、grpc_client.h 与 http_client.h 里找到细节,Python 版本的函数分别在 src/python/library/triton_client 下的 grpc、http、utils 下的。对 Triton 推理服务器而言,并不能确认所收到的推理要求是否为密集型的计算。

2024-08-07 09:10:57 901

原创 NVIDIA Triton系列07-image_client 用户端参数

这里显示有的 8 个推理模型,就是启动服务器时使用“–model-repository=”参数指定的模型仓内容,因此客户端使用“-m”参数指定的模型,必须是在这个表所列的内容之列,例如“-m densenet_onnx”、“-m inception_graphdef”等等。当 Triton 推理服务器运行起来之后,就进入等待请求的状态,因此我们所要提出的请求内容,就必须在用户端软件里透过参数去调整请求的内容,这部分在 Triton 相关使用文件中并没有提供充分的说明,因此。

2024-08-07 09:10:27 751

原创 NVIDIA Triton系列06-安装用户端软件

Triton 开发团队为使用者提供编译好的可执行文件,包括 Ubuntu 20.04、Jetpack 与 Windows 平台,可以在https://github.com/triton-inference-server/server/releases/ 上获取,每个版本都会提供对应。有兴趣者,请自行参考前面下载的开源仓里的 docs/customization_guide/build.md文件,有关于 Ubuntu 20.04、Jetpack 与 Windows 等各种平台的编译细节。

2024-08-06 08:52:37 1106

原创 NVIDIA Triton系列05-安装服务器软件

Triton 开发团队为使用者提供编译好的可执行文件,包括 Ubuntu 20.04、Jetpack 与 Windows 平台,可以在https://github.com/triton-inference-server/server/releases/ 上获取,每个版本都会提供对应。有兴趣者,请自行参考前面下载的开源仓里的 docs/customization_guide/build.md文件,有关于 Ubuntu 20.04、Jetpack 与 Windows 等各种平台的编译细节。

2024-08-06 08:51:27 710

原创 NVIDIA Triton系列04-创建模型仓

Orin 设备作为实验平台,先下载 https://github.com/triton-inference-server/server 开源仓,里面的docs目录下有个 examples/model_repository 就是个模型仓范例,里面有 8 个简单的模型,可以做些简单的测试与体验。Triton 服务器启动时,会将模型仓下的模型载入计算设备的内存之中,并不需要与模型仓所在服务器进行实时数据交换,因此启动之初会消耗比较多时间,开始执行推理计算之后是不会受到网络速度影响推理性能。

2024-08-05 17:52:53 1012

原创 NVIDIA Triton系列03-开发资源说明

这里会链接到 https://github.com/triton-inference-server/server/issues 问题中心,是 Triton 项目中最重要的技术问题解决资源之一,后面执行过程中所遇到的问题,都可以先到这里来查看是否有人已经提出?如果没有的话,也可以在这里提交自己所遇到的问题,项目负责人会提供合适的回复。对于未来要在 Triton 服务器上,对于所使用的网络后端进行性能优化或者创建新的后端,会有很大的助益,但是对于初学者来说是相对艰涩的,因此现阶段先不做深入的说明与示范。

2024-08-05 17:50:18 601

原创 NVIDIA Triton系列02-功能与架构简介

Triton 的后端就是执行模型的封装代码,每种支持的框架都有一个对应的后端作为支持,例如 tensorrt_backend 就是支持 TensorRT 模型推理所封装的后端、openvino_backend 就是支持 openvine 模型推理所封装的后端,目前在 Triton 开源项目里已经提供大约 15 种后端,技术人员可以根据开发无限扩充。**:****存放 Triton 服务器所要使用的模型文件与配置文件的存储设备,可以是本地服务器的文件系统,也可以使用 Google、

2024-06-16 09:02:04 1442

原创 Nvidia TensorRT系列01-TensorRT的功能1

在可用的配置选项中,您可以控制TensorRT降低计算精度的能力,控制内存和运行执行速度之间的权衡,并限制CUDA®内核的选择。要在模型级别控制精度,可以使用BuilderFlag选项(C++,Python)向TensorRT指示,在搜索最快速度时,它可以选择较低精度的实现(并且由于较低精度通常更快,如果允许,它通常会这样做)。因此,在构建阶段完成之前,您不得释放这些数组的内存。为了进行更精细的控制,如果某层必须以更高精度运行,因为网络的部分区域对数字敏感或需要高动态范围,则可以为该层指定算术精度。

2024-06-16 09:01:25 769

原创 NVIDIA Triton系列01-应用概论

NVIDIA 的 Triton 推理服务器是一款开源软件,对于所有推理模式都可以简化在任一框架中以及任何 GPU 或 CPU 上的运行方式,从而在生产环境中使用推理计算,并且支持多模型 ensemble,以及 TensorFlow、PyTorch、ONNX 等多种深度学习模型框架,可以很好的支持多模型联合推理的场景,构建起视频、图片、语音、文本整个推理服务过程,大大降低多个模型服务的开发和维护成本。大大提高了用户的体验,并且服务器的数量减少了多达 78%,极大降低了服务的成本。

2024-06-15 11:35:22 1079

原创 Nvidia TensorRT系列01-基本介绍

鉴于Nvidia的在深度学习上已经非常完善,即使有其他的芯片或者是框架,基本思路也都是要借鉴Nvidia的开发的,好比虽然特斯拉网上很多骂声,但是大多数国内的车企还是在发布会上狠狠对比,又好比手机发布会狠狠对比Apple,好的东西总是值得大家去借鉴的,对于小公司而言,使用其他公司的生态框架硬件成本看起来很低,但是由于生态和社区一般,实际上运维起来的成本又很高。所以,希望通过更新这个系列来帮助自己对Nvidia的TensorRT进行一些基础的学习。

2024-06-15 11:23:06 872

原创 YOLO系列模型发展史

这里在博客中做个简单记录,方便后续查找YOLO系列模型的相关内容!

2024-05-27 00:57:37 1275

原创 【大作业-16】使用YOLOv10快速实现海上红外目标检测

实时物体检测旨在以较低的延迟准确预测图像中的物体类别和位置。YOLO 系列在性能和效率之间取得了平衡,因此一直处于这项研究的前沿。然而,对 NMS 的依赖和架构上的低效阻碍了最佳性能的实现。YOLOv10 通过为无 NMS 训练引入一致的双重分配和以效率-准确性为导向的整体模型设计策略,解决了这些问题。

2024-05-27 00:53:12 2762 4

原创 初识GPT

GPT模型使用了一种称为“自回归”(autoregressive)的方法来生成文本,这意味着模型会根据它之前生成的文本内容来预测下一个词或字符。请注意,这个示例仅用于展示GPT模型的基本结构,并没有包含所有的功能和优化,例如权重初始化、dropout、完整的预处理和训练逻辑等。GPT模型的这些技术原理共同作用,使其能够生成高质量、高连贯性的文本,并且在多种自然语言处理任务上展现出卓越的性能。随着模型规模的增加,GPT系列模型(如GPT-2和GPT-3)的能力也在不断增强。

2024-05-26 00:47:07 443

原创 国产数据库TiDB的常用方法

TiDB的常用方法主要涉及安装配置、数据操作、性能调优以及监控和维护等方面。

2024-05-25 17:57:20 748

原创 国产数据库TiDB简介

TiDB是一款由PingCAP公司自主设计、研发的开源分布式关系型数据库。

2024-05-25 17:56:11 1377

原创 Windows下使用tensorrt配置YOLOv8进行加速

本次部署的流程是pytorch转换为onnx再转换为trt配套资源文件下载地址:待更新。

2024-03-30 21:50:58 1926 2

原创 经典的神经网络#1 Lenet

这篇论文名为《Gradient-Based Learning Applied to Document Recognition》,是Yann LeCun等人在1998年发表的,介绍了LeNet-5卷积神经网络,该网络主要用于手写数字识别。LeNet是由Yann LeCun等人在1998年提出的一种经典的卷积神经网络(Convolutional Neural Network, CNN)架构,最初被设计用于识别手写数字和打印字符等任务。

2024-03-11 14:01:13 912 1

原创 【大作业-15】手把手教你用Unet++做舌象分割

原始的论文放置在DOCS目录下,其中unet++.pdf的文件是该网络结构的原始论文。本文介绍了一种新的医学图像分割架构——UNet++,它是一种深度监督的编码器-解码器网络,通过一系列嵌套的密集跳跃连接将编码器和解码器子网连接起来。UNet++的设计目标是减少编码器和解码器子网特征图之间的语义差距,使得优化器在面对语义相似的特征图时,学习任务变得更加简单。

2024-03-10 23:31:04 5020 11

基于yolo11的肺结节检测系统(luna16)-提供数据集、模型和图形化界面

基于yolo11的肺结节检测系统(luna16) 使用luna16数据集进行处理,解析后的2d图像数量为1186张 提供多组对比实验,包含yolov5、yolov8、yolo11的nano和small4组已训练的模型 提供了一键式的训练、测试、图形化和web界面,方便运行。 为了方便撰写报告,提供了结构图、文档和ppt的模板。 环境配置请参考B站视频,在B站搜索肆十二-:https://www.bilibili.com/video/BV1nzzdYwE2g/

2024-12-12

【大作业-23】 使用yolov9进行PCB电路板缺陷检测.zip

【大作业-23】用yolov8做PCB电路板缺陷检测 包含标注好的PCB电路板缺陷检测的数据集、用于模型训练和测试的yolov9的代码以及训练好的yolov9的模型和使用pyside6编写的图形化界面。 详细的视频教程可以看这期内容:https://www.bilibili.com/video/BV1KHp2eREFZ/ 有问题请私信。

2024-10-05

【大作业-20】用yolov8做动物检测.zip

yolov8YOLOV8动物检测(代码+动物检测数据集+训练好的模型+图形化系统) YOLO系列目前已经更新到了V10,并且YOLO系列模型已经目前稳定运行了一段时间。经过一段时间的准备,我们选择在暑期的这个时间点更新YOLOV8模型的教程,从原理、数据标注和环境配置一一展开讲解,帮助小伙伴们掌握YOLOv8的基本内容。注意本次的教程除了支持v8模型的训练,还适用v3、v5、v9、v10等一系列模型的训练。 资源中包含的内容有标注好的一份动物检测的数据集(大约5000张图像),可以训练和验证的代码、训练好的yolo系列的模型和一份图形化界面,以及我们的联系方式,如果调试遇到问题可以找我来进行交流,对应的视频放置在这个位置https://www.bilibili.com/video/BV1rxHLeoE8D/

2024-10-03

YOLOV8行人检测(代码+行人检测数据集+训练好的模型+图形化系统).zip

YOLOV8行人检测(代码+行人检测数据集+训练好的模型+图形化系统) YOLO系列目前已经更新到了V10,并且YOLO系列模型已经目前稳定运行了一段时间。经过一段时间的准备,我们选择在暑期的这个时间点更新YOLOV8模型的教程,从原理、数据标注和环境配置一一展开讲解,帮助小伙伴们掌握YOLOv8的基本内容。注意本次的教程除了支持v8模型的训练,还适用v3、v5、v9、v10等一系列模型的训练。 资源中包含的内容有标注好的一份行人检测的数据集(大约5000张图像),可以训练和验证的代码、训练好的yolo系列的模型和一份图形化界面,以及我们的联系方式,如果调试遇到问题可以找我来进行交流,对应的视频放置在这个位置https://space.bilibili.com/161240964

2024-08-19

CVPR2024医学图像相关文章整理

CVPR2024医学图像相关文章整理,包含了医学图像的超分、配准、分割以及生成

2024-08-11

ICASSP2024-Paper-Templates.zip

ICASSP2024_Paper_Templates模板 包含word模板和Latex模板

2024-08-11

YOLOV5麦穗计数数据集+代码+模型+教学视频-更新

小麦是世界上种植地域最广、面积最大及产量最多的粮食作物,2021年世界小麦使用量达到7.54亿吨。小麦产量的及时预估对作物生产、粮食价格及粮食安全产生重大影响,单位面积穗数是小麦产量预估研究中的难点及重中之重。当前,人工估产方法依据专家目测估计产量,准确率得不到保证。取样估产方法通过采集部分区域,进行人工计数、称重,费时费力。随着计算机视觉技术的发展,大量研究致力于统计单幅图像中麦穗数进而实现估产,此类研究利用卷积神经网络强大的特征自学习能力,对麦穗进行特征提取,通过大量数据训练模型,进而成功实现对图像中麦穗计数,为后续小麦估产提供数据参考。然而部分现有的麦穗计数研究基于通用的原始计数网络,未考虑小麦尺度不一、密集等特点进行优化,准确率有待提升。 本期我们将深度学习算法YOLOV5和农业进行结合,通过目标检测的方式来统计一片区域中的麦穗数量。 博客地址:https://blog.csdn.net/ECHOSON/article/details/129721592

2024-08-09

28-基于Tensorflow的风格迁移+代码+模型+系统界面+教学视频.zip

随着GPT的横空出世,生成式网络也越来越活,现在的大语言模型除了能回答文字上面的内容,并且在图像和视频创作中也表现除了巨大的潜力,今天我们继续大作业系列,以比较早的一篇李飞飞博士的快速风格迁移为例,给大家展示一下早期是如何利用卷积神经网络来进行图像风格迁移的。具体我们要实现的效果如下,通过tensorflow框架构建快速图像分割迁移的网络并利用训练好的四个模型实现对任意上传图片的风格迁移,并利用PyQt5构建图形化的界面来完成最终的系统。 博客地址:https://blog.csdn.net/ECHOSON/article/details/139205973

2024-08-09

YOLOv10海上红外目标检测+代码+模型+系统界面+教学视频.zip

本资源配套对应的视频教程和图文教程,手把手教你使用YOLOV10做海上船只红外目标检测的训练、测试和界面封装,包含了YOLOV10原理的解析、处理好的训练集和测试集、训练和测试的代码以及训练好的模型,并封装为了图形化界面,只需点击上传按钮上传图像即可完成海上红外图像的预测。 在这里,我们用一个红外海洋目标检测的数据集,里面包含了7类海洋目标 `['liner', 'sailboat', 'warship', 'canoe', 'bulk carrier', 'container ship', 'fishing boat']` YOLOv10模型于24年5月份正式提出,对过去YOLOs的结构设计、优化目标和数据增强策略进行了深入的了解和探索,并对YOLO模型中的各个组件进行了rethink,从后处理和模型结构入手进行了新的设计,在速度和精度上进行提升。 博客地址为:https://blog.csdn.net/ECHOSON/article/details/139223999

2024-08-07

Unet++舌象图像分割数据集+代码+模型+系统界面+教学视频.zip

舌象分割在中医舌诊中具有重要的意义。舌诊是中医通过观察舌象了解人体生理功能和病理变化的一种诊断方法。舌象分割是将舌面划分为不同的区域,每个区域对应着不同的脏腑和病理变化。 UNet++,它是一种深度监督的编码器-解码器网络,通过一系列嵌套的密集跳跃连接将编码器和解码器子网连接起来。UNet++的设计目标是减少编码器和解码器子网特征图之间的语义差距,使得优化器在面对语义相似的特征图时,学习任务变得更加简单。 该文件中包含提前处理好的舌象数据集和标签,以及训练好的unet++模型和完整的训练、测试和图形化界面的Python代码,并且提供了实际的操作视频,按照视频只需要进行一下基本的环境创建,即可运行出一个完整的分割系统。

2024-03-10

Unet眼底血管图像分割数据集+代码+模型+系统界面+教学视频.zip

本资源配套对应的视频教程和图文教程,手把手教你使用Unet做眼底图像分割的训练、测试和界面封装,包含了Unet原理的解析、处理好的训练集和测试集、训练和测试的代码以及训练好的模型,并封装为了图形化界面,只需点击上传按钮上传图像即可完成眼底图像的预测。 随着生活水平的提高,眼科疾病以及心脑血管疾病的发病率呈现逐年增长的趋势。视网膜血管是这类疾病诊断和监测的重要信息来源,其形态和状况的变化可以反映出许多疾病的早期病理变化。然而,由于受眼底图像采集技术的限制以及视网膜血管自身结构的复杂性和多变性,使得视网膜血管的分割变得非常困难。传统方法依靠人工手动分割视网膜血管,不仅工作量巨大,极为耗时,而且受主观因素影响严重。通过眼底血管图像分割可以提高诊断准确性、效率以及推动科学研究和改进治疗方法等方面。 B站主页:https://space.bilibili.com/161240964 C站主页:https://blog.csdn.net/ECHOSON

2024-02-17

YOLOV5交通标志识别检测数据集+代码+模型+教学视频

通过拍照标注的形式标注数据 交通标志的目标检测算法在计算机视觉领域一直属于热点研究问题,改进的优化算法不断地被提出。 目前的标注数据只有三大类:指示标志、禁止标志、警告标志。

2023-03-18

YOLOV5电线绝缘子缺陷检测数据集+代码+模型+视频讲解

绝缘子作为输电环节中的重要设备,在支撑固定导线,保障绝缘距离的方面有着重要作用。深度学习技术的大量应用,计算机运算性能的不断提高,为无人机准确识别和定位绝缘子,实时跟踪拍摄开辟了新的解决途径。本文对输电线路中绝缘子进行识别及定位,利用深度学习技术采取基于YOLOv5 算法的目标检测手段,结合绝缘子数据集的特点,对无人机拍摄图片进行训练,实现对绝缘子精准识别和定位,大幅提升无人机巡检时对绝缘子设备准确跟踪、判定的效率,具有十分重要的应用效果。本项目可以作为计算机专业毕业涉及,提供处理好的数据集、视频和三组训练好的模型,部署简单,并且具有可用于图片检测和视频检测的图形化界面,方便易用。

2023-03-15

YOLOV5动物检测数据集+代码+模型 2000张标注好的数据+教学视频

1.目标检测格式数据集,标签为yolo的txt格式 2.动物检测数据集,支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 3. 提供3组训练好的YOLOV5模型 4.代码中包含图形化界面

2022-03-09

YOLOV5手势识别数据集+代码+模型 2000张标注好的数据+教学视频

1.目标检测格式数据集,标签为yolo的txt格式 2.手势识别数据集,支持[ 'A', 'number 7', 'D', 'I', 'L', 'V', 'W', 'Y', 'I love you', 'number 5' ]10种手势的识别 3. 提供3组训练好的YOLOV5模型 4.代码中包含图形化界面 5.提供B站视频教程:https://www.bilibili.com/video/BV1YL4y1J7xz/

2022-03-05

【大作业-08】YOLOV5火灾检测数据集+代码+模型 2000张标注好的数据+教学视频

YOLOV5火灾检测数据集+代码+模型 2000张标注好的数据+教学视频

2022-02-19

皮肤病语义分割数据集+代码+unet模型 2000张标注好的数据+教学视频

兄弟们好呀,这里是肆十二,这转眼间寒假就要过完了,相信大家的毕设也要准备动手了吧,作为一名大作业区的UP主,也该蹭波热度了,之前关于图像分类和目标检测我们都出了相应的教程,所以这期内容我们搞波新的,我们用Unet来做医学图像分割。我们将会以皮肤病的数据作为示范,训练一个皮肤病分割的模型出来,用户输入图像,模型可以自动分割去皮肤病的区域和正常的区域。

2022-02-13

人脸识别系统+windows64位-dlib-19.17.0-cp37-cp37m-win_amd64.zip

python编写的人脸识别程序和预编译的dlib库

2022-01-10

大作业05-YOLOV5口罩检测数据集+代码+模型 2000张标注好的数据+教学视频.zip

YOLOV5口罩检测数据集+代码+模型 2000张标注好的数据+教学视频 代码的下载地址在:https://gitee.com/song-laogou/yolov5-mask-42 大家可以按照这里的视频教程配置环境:https://www.bilibili.com/video/BV1YL4y1J7xz/ 更多数据请看:https://blog.csdn.net/ECHOSON/article/details/121892887 遇到问题请小伙伴通过私信联系作者,感谢大家的支持!

2021-12-14

cuda11和cudnn8.1.zip

cuda11和cudnn8.1,用于mmdetection

2021-08-06

垃圾分类数据集和tf代码-8w张图片245个类.zip

包含垃圾分类数据集和tf代码-8w张图片245个类,提供2组训练好的模型在models目录下,详情请看https://blog.csdn.net/ECHOSON/article/details/118025415

2021-06-18

小麦叶片病虫害分类数据集-提高代码和教程.zip

小麦叶片病虫害分类数据集-提高tensorflow代码和教程,结合作者录制的b站视频,快速掌握不是梦。数据集详细信息请看https://blog.csdn.net/ECHOSON/article/details/117964438

2021-06-16

水稻叶片病虫害分类数据集-提供代码和教程.zip

水稻叶片病虫害分类数据集-提供tensorflow代码和教程,结合作者录制的b站视频,快速掌握不是梦。数据集详细信息请看https://blog.csdn.net/ECHOSON/article/details/117964438

2021-06-16

蔬菜识别数据集-提供代码和教程.zip

蔬菜识别数据集-提供tensorflow代码和教程,结合作者录制的b站视频,快速掌握不是梦。数据集详细信息请看https://blog.csdn.net/ECHOSON/article/details/117964438

2021-06-16

苹果叶片病虫害分类数据集-提高代码和教程.zip

苹果叶片病虫害分类数据集-提高tensorflow代码和教程,结合作者录制的b站视频,快速掌握不是梦。数据集详细信息请看https://blog.csdn.net/ECHOSON/article/details/117964438

2021-06-16

脑肿瘤切片分类数据集-提供代码和教程.zip

脑肿瘤切片分类数据集-提供tensorflow代码和教程,结合作者录制的b站视频,快速掌握不是梦。数据集详细信息请看https://blog.csdn.net/ECHOSON/article/details/117964438

2021-06-16

花卉识别数据集98类-提供代码和教程.zip

花卉识别数据集98类-提供tensorflow代码和教程.,结合作者录制的b站视频,快速掌握不是梦。数据集详细信息请看https://blog.csdn.net/ECHOSON/article/details/117964438

2021-06-16

花卉识别数据集5类-提供代码和教程.zip

花卉识别数据集5类-提供tensorflow代码和教程,结合作者录制的b站视频,快速掌握不是梦。数据集详细信息请看https://blog.csdn.net/ECHOSON/article/details/117964438

2021-06-16

肺炎x光图片分类数据集-提供代码和教程.zip

肺炎x光图片分类数据集-提供tensorflow代码和教程,结合作者录制的b站视频,快速掌握不是梦。数据集详细信息请看https://blog.csdn.net/ECHOSON/article/details/117964438

2021-06-16

果蔬识别数据集.zip

果蔬识别数据集,包含'土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜'12种水果蔬菜

2021-06-05

云南大学软件学院软件工程.zip

云南大学软件学院软件工程实验和大作业

2021-06-04

云南大学软件学院设计模式实验.zip

云南大学软件学院设计模式,谢老师教授

2021-06-04

云南大学软件学院陈清毅老师物联网实验报告.zip

云南大学软件学院陈清毅老师物联网实验报告.zip

2021-06-04

西安交通大学杜小智软件测试mooc答案.zip

西安交通大学杜小智软件测试mooc答案,选择题和问答题

2021-06-03

西安交通大学高级计算机网络与通信期末.zip

西安交通大学高等计算机网络与通信期末考试题和复习资料,有期末考试题,课件和复习的大纲

2021-06-03

dlib不用编译的whl文件.zip

dlib python3.6和python3.7 不需要编译的whl文件

2021-04-21

C++ 14.0.zip

C++ 14.0 is required 的解决方案

2021-03-12

Fruit-Images-Dataset-master.zip

水果分类数据集。Fruits-360: A dataset of images containing fruits and vegetables

2021-03-12

自动化学报Word模板.zip

自动化学报word模板

2021-01-12

snort-2.9.16.tar.gz

在1998年,Martin Roesch用C语言开发了开放源代码(Open Source)的入侵检测系统Snort。直至今天,Snort已发展成为一个具有多平台(Multi-Platform)、实时(Real-Time)流量分析、网络IP数据包(Pocket)记录等特性的强大的网络入侵检测/防御系统(Network Intrusion Detection/Prevention System),即NIDS/NIPS。Snort符合通用公共许可(GPL——GNU General Pubic License),在网上可以通过免费下载获得Snort,并且只需要几分钟就可以安装并开始使用。

2020-04-23

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除