肆十二
码龄7年
关注
提问 私信
  • 博客:1,510,853
    社区:135
    问答:104
    动态:301
    视频:2,525
    1,513,918
    总访问量
  • 194
    原创
  • 2,549
    排名
  • 23,498
    粉丝
  • 1,403
    铁粉

个人简介:那些没有把我击倒的,只会让我更强大。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:海南省
  • 加入CSDN时间: 2017-10-06
博客简介:

dejahu的博客

博客描述:
愿你一生欢喜,不为世俗所及。
查看详细资料
  • 原力等级
    当前等级
    9
    当前总分
    11,645
    当月
    148
个人成就
  • 人工智能领域优质创作者
  • 获得4,991次点赞
  • 内容获得1,519次评论
  • 获得20,939次收藏
  • 代码片获得241,873次分享
创作历程
  • 3篇
    2025年
  • 96篇
    2024年
  • 6篇
    2023年
  • 8篇
    2022年
  • 47篇
    2021年
  • 34篇
    2020年
成就勋章
TA的专栏
  • XJTU机器学习作业
    付费
    6篇
  • 大作业系列
    39篇
  • 多模态与大模型
    1篇
  • 大模型
    3篇
  • 医学图像处理
    7篇
  • CVDEBUG
    2篇
  • 个人心得
    18篇
  • AI前沿
    8篇
  • mmseg
    3篇
  • Python常用的库
    9篇
  • NVIDIA Triton
    16篇
  • 小样本图像分割
    4篇
  • 数据预处理
    3篇
  • 小工具
    9篇
  • 大作业
    5篇
  • TensorRT
    2篇
  • Pytorch语法
    8篇
  • 编程环境配置
    5篇
  • 目标检测
    9篇
  • OPENMMLAB
    4篇
  • 深度学习笔记
    6篇
  • OCR
    2篇
  • XJTU课程相关
    1篇
  • PaddleOCR
    4篇
  • linux
    3篇
  • 车辆重识别
    2篇
TA的推广
兴趣领域 设置
  • 人工智能
    opencvtensorflowpytorch迁移学习
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【大作业-31】基于改进yolo11的摔倒检测系统(数据集+模型+改进+图形化界面)

yolo系列已经在业界可谓是家喻户晓了,下面是yolo11放出的性能测试图,其中这种图的横轴为模型的速度,一般情况下模型的速度是通过调整卷积的深度和宽度来进行修改的,纵轴则表示模型的精度,可以看到在同样的速度下,11表现出更高的精度。YOLO架构的核心由三个基本组件组成。首先,主干作为主要特征提取器,利用卷积神经网络将原始图像数据转换成多尺度特征图。其次,颈部组件作为中间处理阶段,使用专门的层来聚合和增强不同尺度的特征表示。第三,头部分量作为预测机制,根据精细化的特征映射生成目标定位和分类的最终输出。
原创
发布博客 10 小时前 ·
751 阅读 ·
20 点赞 ·
0 评论 ·
29 收藏

【大作业-32】基于改进UNET的肺部图像分割系统(unet、unet++、r2net、attention unet以及unet的改进)

Precision和Recall主要从不同的角度衡量模型在预测正类时的表现,一个注重减少假阳性(Precision),另一个注重减少假阴性(Recall)。mIoU计算了预测与真实标签之间的重叠程度,越高越好。mPA聚焦于每个类别的像素级准确率,适用于多类别的分割任务。Dice 系数是衡量两个区域相似度的一个综合指标,常用于评估医学图像中的目标分割。这些指标各有侧重,在不同的任务中可能需要选择适合的评估方式。通常,综合考虑多个指标可以更全面地评估分割模型的表现。
原创
发布博客 2025.01.12 ·
1063 阅读 ·
18 点赞 ·
0 评论 ·
31 收藏

基于改进yolo11的垃圾检测系统(数据集+模型+改进+图形化界面)

yolo系列已经在业界可谓是家喻户晓了,下面是yolo11放出的性能测试图,其中这种图的横轴为模型的速度,一般情况下模型的速度是通过调整卷积的深度和宽度来进行修改的,纵轴则表示模型的精度,可以看到在同样的速度下,11表现出更高的精度。YOLO架构的核心由三个基本组件组成。首先,主干作为主要特征提取器,利用卷积神经网络将原始图像数据转换成多尺度特征图。其次,颈部组件作为中间处理阶段,使用专门的层来聚合和增强不同尺度的特征表示。第三,头部分量作为预测机制,根据精细化的特征映射生成目标定位和分类的最终输出。
原创
发布博客 2025.01.09 ·
738 阅读 ·
18 点赞 ·
0 评论 ·
25 收藏

【大作业-29】基于yolo11的抽烟检测系统(数据集+模型+图形化界面)

yolo系列已经在业界可谓是家喻户晓了,下面是yolo11放出的性能测试图,其中这种图的横轴为模型的速度,一般情况下模型的速度是通过调整卷积的深度和宽度来进行修改的,纵轴则表示模型的精度,可以看到在同样的速度下,11表现出更高的精度。YOLO架构的核心由三个基本组件组成。首先,主干作为主要特征提取器,利用卷积神经网络将原始图像数据转换成多尺度特征图。其次,颈部组件作为中间处理阶段,使用专门的层来聚合和增强不同尺度的特征表示。第三,头部分量作为预测机制,根据精细化的特征映射生成目标定位和分类的最终输出。
原创
发布博客 2024.12.26 ·
1356 阅读 ·
24 点赞 ·
0 评论 ·
39 收藏

【多模态-1】 Transformers简介

大模型在自然语言处理、视觉-语言融合、少样本学习、跨模态任务等方面已取得显著进展。随着计算能力的提升和模型优化技术的发展,未来大模型将更加高效、精确和具备更强的跨领域能力。同时,伦理、安全等问题仍需关注,以确保大模型能够安全、负责任地应用于各种实际场景。在使用到大语言模型的时候,经常会接触到一个叫做transformer的库,尤其是当你的任务涉及到文本方面的处理的时候。Transformers 提供了可以轻松地下载并且训练先进的预训练模型的 API 和工具。
原创
发布博客 2024.12.25 ·
1108 阅读 ·
10 点赞 ·
0 评论 ·
16 收藏

基于yolo11的海洋生物检测与计数系统(海参、海胆、扇贝、海星)

yolo系列已经在业界可谓是家喻户晓了,下面是yolo11放出的性能测试图,其中这种图的横轴为模型的速度,一般情况下模型的速度是通过调整卷积的深度和宽度来进行修改的,纵轴则表示模型的精度,可以看到在同样的速度下,11表现出更高的精度。YOLO架构的核心由三个基本组件组成。首先,主干作为主要特征提取器,利用卷积神经网络将原始图像数据转换成多尺度特征图。其次,颈部组件作为中间处理阶段,使用专门的层来聚合和增强不同尺度的特征表示。第三,头部分量作为预测机制,根据精细化的特征映射生成目标定位和分类的最终输出。
原创
发布博客 2024.12.24 ·
1573 阅读 ·
52 点赞 ·
0 评论 ·
25 收藏

如何入门自然语言处理(小白篇)

入门自然语言处理(NLP)是一个逐步深入的过程,可以从一些简单的任务开始,逐步掌握更加复杂的概念和技术。以下是入门NLP的一些步骤和实际的例子来帮助你更好地理解如何学习NLP。
原创
发布博客 2024.12.24 ·
403 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

大模型学习路线(小白篇)

学习大模型(如GPT、BERT等深度学习模型)是一个系统且渐进的过程,需要具备一定的基础知识。以下是一个大模型学习的推荐路线,分为多个阶段。
原创
发布博客 2024.12.24 ·
712 阅读 ·
22 点赞 ·
0 评论 ·
11 收藏

多模态医学图像分割介绍

多模态医学图像分割(Multimodal Medical Image Segmentation)是指在医学影像处理中,利用来自不同成像技术(如MRI、CT、超声等)的图像数据,进行目标区域(如肿瘤、器官等)的精确分割。这种方法结合了多个不同来源的数据,以期从不同角度更全面地理解组织或病变的形态、位置及其性质,从而提升分割的准确性和鲁棒性。
原创
发布博客 2024.12.24 ·
901 阅读 ·
25 点赞 ·
0 评论 ·
17 收藏

【大作业-27】Unet系列模型在自己医学数据集上应用(unet、unet++、r2net、attention unet以及unet的改进)

本次我们主要从一个带改进得实验出发,进行多种网络结构的介绍,在我们的资源目录中附带了每个方法对应的论文,对详细原理感兴趣的小伙伴可以直接去看论文,我们主要以原始的unet作为baseline然后进行改进的实验。改进的实验主要在unet的encoder部分,我们将网络的encoder部分修改为带有预训练的resnet50模型和vgg16模型,另外还有其他的unet的版本。我们下面对这些网络结构进行一一解析。Precision和Recall。
原创
发布博客 2024.12.24 ·
1437 阅读 ·
21 点赞 ·
1 评论 ·
29 收藏

谈谈AI的下一步发展

这两天正好是NeuralPS2024,ILya在会上发布了演讲,总结了近些年来AI的发展,并且给出推论,我们所知道的AI大模型预训练的时代即将结束。知乎上很多大佬对这次会议进行了总结,大家感兴趣的可以去看下面的回答。在大模型的时代,有一个定律:Scaling law。你训练的参数量越大、数据越大,通过下一个token的预测加自然分布的预料就能越逼近智能的极限。
原创
发布博客 2024.12.15 ·
936 阅读 ·
20 点赞 ·
0 评论 ·
13 收藏

使用yolo11进行的肺结节检测(Luna2016)

yolo系列已经在业界可谓是家喻户晓了,下面是yolo11放出的性能测试图,其中这种图的横轴为模型的速度,一般情况下模型的速度是通过调整卷积的深度和宽度来进行修改的,纵轴则表示模型的精度,可以看到在同样的速度下,11表现出更高的精度。YOLO架构的核心由三个基本组件组成。首先,主干作为主要特征提取器,利用卷积神经网络将原始图像数据转换成多尺度特征图。其次,颈部组件作为中间处理阶段,使用专门的层来聚合和增强不同尺度的特征表示。第三,头部分量作为预测机制,根据精细化的特征映射生成目标定位和分类的最终输出。
原创
发布博客 2024.12.13 ·
1561 阅读 ·
25 点赞 ·
0 评论 ·
24 收藏

CVPR2023病理图像无监督学习:Visual Language Pretrained Multiple Instance Zero-Shot Transfer for Histopathology

基本介绍中,作者主要是对论文的动机进行了描述,给出了这项研究的重要性,主要是对以往的方法进行总结,说明缺少一个wsi图像的无监督模型。目前,弱监督的方法已经在wsi模型上成为了主流,进行弱监督的主要步骤是:1)管理大型患者队列(N > 1000个样本),2)将WSI解开并标记为一系列补丁特征,3)使用标签来训练学习聚集补丁特征以进行预测的载玻片分类器,以及4)将载玻片分类器转移到下游临床部署。这里相当于直接将分散的patch的特征进行学习,之后集合这些特征一起对载玻片形式的图像进行预测。
原创
发布博客 2024.12.13 ·
1015 阅读 ·
30 点赞 ·
0 评论 ·
18 收藏

基于yolo11的肺结节检测系统(luna16)-提供数据集、模型和图形化界面

发布资源 2024.12.12 ·
zip

ERROR: Failed building wheel for PyQt5-sip

今天安装pyqt的时候一直报错,即使安装了对应的vs 14.0同样还是会出现qt的报错。经过我的实验,应该又是版本更新导致的问题出现。成功解决这个bug。
原创
发布博客 2024.12.08 ·
484 阅读 ·
10 点赞 ·
0 评论 ·
3 收藏

多模态医学模型

在医学大模型conch中,处理一张病理图像将会涉及到超过1000个的视觉token,而对应的文本的token只有数十个,即使对于复杂的报告来说,文本的token也不会超过100个。在教师网络中使用比较大的模型权重,对于学生网络则使用参数量较少的网络,并且需要保证学生网络是教师网络的子集,或者是学生网络是通过对教师网络的参数进行剪枝之后获得的。视觉的token之间注意力的交互往往具有空间的稀疏性,大部分的交互都会集中在邻近的token之间,而远距离的token的交互在一些情况下可以忽略。
原创
发布博客 2024.12.06 ·
581 阅读 ·
13 点赞 ·
0 评论 ·
11 收藏

如何对transformer结构进行优化

Transformer模型的计算量主要体现在自注意力机制的 ( O(n^2) ) 计算复杂度,特别是在处理长序列时。优化Transformer的计算量可以从多个方面入手,包括稀疏化自注意力、低秩分解、混合架构、量化和剪枝等方法。通过这些优化手段,可以有效减少计算量,提高模型在资源受限环境下的效率。最后推荐一篇论文,非常好。
原创
发布博客 2024.12.05 ·
533 阅读 ·
12 点赞 ·
0 评论 ·
5 收藏

【大作业-25】使用yolo11进行交通标志检测(tt100k)原理讲解+代码实践

yolo系列已经在业界可谓是家喻户晓了,下面是yolo11放出的性能测试图,其中这种图的横轴为模型的速度,一般情况下模型的速度是通过调整卷积的深度和宽度来进行修改的,纵轴则表示模型的精度,可以看到在同样的速度下,11表现出更高的精度。YOLO架构的核心由三个基本组件组成。首先,主干作为主要特征提取器,利用卷积神经网络将原始图像数据转换成多尺度特征图。其次,颈部组件作为中间处理阶段,使用专门的层来聚合和增强不同尺度的特征表示。第三,头部分量作为预测机制,根据精细化的特征映射生成目标定位和分类的最终输出。
原创
发布博客 2024.12.04 ·
1639 阅读 ·
37 点赞 ·
0 评论 ·
21 收藏

Python项目配置前的准备工作

推荐大家使用清华镜像下载的miniconda,实测非常稳定,记得安装的时候所有的对号都要选择上。现在完成之后,直接命令行打开输入conda -V的指令观察是否能正确输出conda的版本号,如果可以,则说明没有问题。另外,为了增加后面镜像下载的速度,推荐大家配置国内的镜像。请执行下面的指令进行镜像的配置。
原创
发布博客 2024.12.04 ·
1158 阅读 ·
6 点赞 ·
0 评论 ·
6 收藏

TCGA数据含义解析

TCGA(The cancer genome atlas,癌症基因组图谱)由 National Cancer Institute(NCI,美国国家癌症研究所) 和 National Human Genome Research Institute(NHGRI,美国国家人类基因组研究所)于 2006 年联合启动的项目, 收录了各种人类癌症(包括亚型在内的肿瘤)的临床数据,基因组变异,mRNA表达,miRNA表达,甲基化等数据,是癌症研究者很重要的数据来源。
原创
发布博客 2024.12.03 ·
634 阅读 ·
7 点赞 ·
0 评论 ·
5 收藏
加载更多