EI Madrigal

当樱木花道完成两万球的训练之后,他才知道流川枫有多厉害。不是每个像科比那样的天才,都知道洛杉矶凌晨4点的样子。洛克李,火影里那个相信笨鸟先飞的热血少年,他说,努力的天才也是天才。...

算法分析常用记号

下面四种记号是为了建立函数间的相对级别。
CLRS上的一张图很直观:
这里写图片描述

大O记号

定义:如果存在正常数cn0,使得当NnoT(N)cf(N),记T(N)=O(f(N))

举个栗子:
N<1000时,1000N>N2,但N2增长率更大,所以最终N2会更大,即O(N2)=1000N

也就是说,总会存在某个点n0,从这个点以后cf(N)至少和T(N)一样大,忽略常数因子,即T(N)增长率小于等于f(N)的增长率。

那么为什么这个常数因子c可以忽略呢?
Nno时,T(N)cf(N),也就是T(N)f(N)c。此时如果T(N)增长率大于f(N)的增长率,那么T(N)f(N)不可能小于某个常数,也就是c不存在,与我们的前提条件矛盾,所以说忽略掉常数因子后,T(N)增长率仍然小于等于f(N)的增长率。

那么既然T(N)是以不快于f(N)的速度增长,也就可以说f(N)T(N)的一个上界(upper bound)。

Ω记号

定义:如果存在正常数cn0,使得当NnoT(N)cg(n),记T(N)=Ω(g(n))

与上述大O的分析类似,可知:
T(N)增长率大于等于g(N)的增长率,g(N)T(N)的一个下界(lower bound)。

Θ记号

定义:当且仅当T(N)=Ω(h(n))T(N)=O(h(n))时,
T(N)=Θ(f(n))

那么这个就是说T(N)增长率等于h(N)的增长率。

小o记号

定义:若T(N)=O(p(n))T(N)Θ(p(n))时,
T(N)=o(f(n))

与大O不同,小o表示T(N)增长率小于p(N)的增长率,不包括等于。

阅读更多
版权声明:转载请注明出处! https://blog.csdn.net/EIMadrigal/article/details/80349086
文章标签: algorithm notation
个人分类: 算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

算法分析常用记号

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭