目录
一、题目
1、题目描述
2、输入输出
2.1输入
2.2输出
3、原题链接
二、解题报告
1、思路分析
考虑 一个可能的初始队伍数目 num 的 变化历程
除2,除2,除2 ……=> 变为 奇数m,m * (m - 1) / 2
假如除了 i 次2,变为奇数m
那么有 m * (2^i - 1) + (m - 1) * m / 2 = n
因为指数增长很快,2^60 都已经超过1E18了
我们发现合法的 i 其实很少
而一旦 i 固定,式子关于 m 就是单调递增的
于是想到 枚举 i,二分 m
问题迎刃而解
2、复杂度
时间复杂度: O(log^2 n)空间复杂度:O(1)
3、代码详解
#include <bits/stdc++.h>
// #define DEBUG
using u32 = unsigned;
using i64 = long long;
using u64 = unsigned long long;
constexpr int inf32 = 1E9 + 7;
constexpr i64 inf64 = 1E18 + 7;
void solve() {
i64 n;
std::cin >> n;
bool f = 0;
for (int i = 0; i < 60; ++ i) {
i64 v = 1LL << i;
i64 lo = 0, hi = std::min(1LL << 31, n / std::max(v - 1, 1LL));
while (lo < hi) {
i64 x = lo + (hi - lo) / 2;
if (x * (v - 1) + x * (x - 1) / 2 >= n) hi = x;
else lo = x + 1;
}
if (hi * (v - 1) + hi * (hi - 1) / 2 == n && (hi & 1)) {
std::cout << hi * v << '\n';
f = true;
}
}
if (!f) std::cout << "-1\n";
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
#ifdef DEBUG
int cur = clock();
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
int t = 1;
// std::cin >> t;
while (t--) {
solve();
}
#ifdef DEBUG
std::cerr << "run-time: " << clock() - cur << '\n';
#endif
return 0;
}