研究背景
材料科学是一个重要领域,涉及物质的研究和利用。随着科技进步,材料学已成为多学科交叉的前沿领域之一,融合物理、化学、数学、信息、力学和计算科学等知识。寻找更坚固的新材料已成为当今急需解决的问题。
材料基因工程作为一项颠覆性的技术手段,汲取生物学基因理念,旨在加速新材料的研发和应用。其中,建立高通量计算设计平台是其中关键一环。类似于生物基因组学的方法,通过大规模计算来预测和设计具有特定性能的材料,加速材料从设计到工程应用的过程,大幅提高新材料研发效率。这意味着更快速地将新材料推向市场,推动科技进步和产业发展。与传统材料研究相比,材料基因工程依赖于大数据分析和机器学习等技术,以发现新的材料组合和优化材料性能。
高通量多尺度材料计算和机器学习这个概念融合了高通量计算和多尺度模拟的技术,同时利用机器学习算法来优化和加速材料研究。
在高通量多尺度材料计算中,高通量计算技术利用大规模计算资源和并行处理能力,可以快速计算和预测材料的性能和特性,使得研究人员可以更快速地筛选和设计具有特定性能的材料。另一方面,多尺度模拟技术可以从宏观到微观的不同尺度层级上对材料进行建模和模拟,揭示材料的结构和性能之间的关联,以更加全面地理解材料的行为,并为材料设计提供更准确的参考。在机器学习方面,通过对大量的实验数据和计算结果进行分析和挖掘,可以帮助研究人员发现隐藏在数据中的规律和趋势,从而加速材料设计和优化过程。
▲ 高通量材料计算驱动引擎的要素整合
高通量材料计算驱动引擎有效地整合了算法、算力、数据和知识
应用案例
该研究结果发表在Advanced Science(DOI: 10.1002/advs.201600517)
锂金属电池具有高能量密度,但锂金属的强还原性导致锂电池稳定性差。长期以来,人们一直在努力稳定锂金属负极,但由于对稳定材料化学的了解不足,这些努力受到了阻碍。</