拟合问题中偏差与方差分解公式证明

103 篇文章 15 订阅 ¥59.90 ¥99.00
本文探讨了在机器学习中,模型拟合的偏差和方差对泛化性能的影响。偏差表示模型对真实数据分布的错误假设,而方差反映了模型对训练数据的敏感度。1996年Breiman提出的方差-偏差分解定理说明,总误差可分解为偏差的平方、方差和噪声三部分。通过数学推导和实例,展示了如何平衡偏差和方差以提高模型的泛化能力。
摘要由CSDN通过智能技术生成

在机器学习中,我们经常面临着拟合问题,即通过拟合一个模型来逼近真实数据的分布。然而,模型的泛化性能往往受到两个主要因素的影响:偏差和方差。为了更好地理解和评估模型的性能,我们需要将偏差和方差进行分解,并研究它们之间的关系。

偏差(Bias)可以理解为模型对真实数据分布的错误假设程度,是由于我们选择的模型的某些限制性假设导致的误差。通俗地说,偏差越高,模型对真实数据的拟合程度就越差。

方差(Variance)反映了模型对训练样本的过度敏感程度,也可以理解为模型在不同数据集上的波动性,即模型预测结果的不稳定性。方差越高,模型对训练数据的拟合程度就越好,但对新样本的泛化能力较差。

1996年,Leo Breiman提出了方差-偏差分解定理,用于解释模型的泛化误差。该定理表明,总体泛化误差可以分解为偏差的平方、方差和不可消除的噪声三部分。公式如下:

总误差 = 偏差² + 方差 + 不可消除的噪声

在统计学中,我们可以通过数学推导来证明这个定理。设真实数据的分布为D,训练数据集为S,模型为f(x;S),其中x为输入特征。根据期望值的性质,可以推导出:

E_D[(y-f(x;S))^2] = (E_D[f(x;S)] - E_D[y])^2 + E_D[(f(x;S) -

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值