拓展欧几里德算法

        拓展欧几里德定理:对于不完全为0的非负整数a,b,必然存在整数对x,y,使得ax+by=gcd(a,b)。

        利用拓展欧几里德定理,可以对形如ax+by=c的式子进行是否存在整数解的判断,以及存在时解为何值的运算,整个过程称为拓展欧几里德算法。

        首先,对于ax+by=c这一式子,根据拓展欧几里得定理ax+by=gcd(a,b),若c%gcd(x,y)=0成立,则表示式子存在整数解,此时,我们有:

                ax1+by1=gcd(a,b)=gcd(b,a%b)=bx2+(a%b)y2=bx2+(a-a/b*b)y2=ay2+bx2-b(a/b)y2

        根据恒等定理,显然有x1=y2,y1=x2-(a/b)y2。从中可以看出x1和y1的值取决于x2和y2,以此类推,可知x2和y2的值取决于x3和y3……直到xn和yn,此时b=0,使得axn=gcd(a,0)=a,故xn=1,yn=0,再往上逆推xn-1和yn-1等等,直到x1和y1的值,整个过程可以用递归来实现。此时,需要注意到ax1+by1=gcd(a,b),(c/gcd(a,b))x1+(c/gcd(a,b))y1=c,而且这只是这个方程的某一对解而已,因为我们令yn=0了。

         另外,可以留意到的是,求解x和y的过程中也是可以顺便求出gcd(a,b)的,至于代码则可以参考下面贴出来的:

//对于ax+by=gcd(a,b),求x和y的值
void exEuclid( int a, int b, int& x, int& y, int& gcd ) {
    if ( b == 0 ) {
        x = 1;
        y = 0;
        gcd = a;
    }
    else {
        exEuclid( b, a % b, y, x, gcd );
        y -= a / b * x;
    }
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值