【机器学习】逻辑回归基本思路

逻辑回归Decision boundry的寻找思路:

对于给定的样本D=( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . . . . , ( x N , y N ) x_1,y_1),(x_2,y_2),......,(x_N,y_N) x1,y1),(x2,y2),......,(xN,yN),逻辑回归首先假定有一个超平面 w T x + b = 0 w^Tx+b=0 wTx+b=0可以对其进行划分,当给定的样本特征使 w T x + b > 0 w^Tx+b>0 wTx+b>0时,将其分为正样本1,反之当 w T x + b < 0 w^Tx+b<0 wTx+b<0时,将其分为负样本0

假设出这个超平面后,下一步是寻找这个边界与分类的概率联系,直接对分类的概率建模,于是将样本空间映射到函数 F ( x ) = 1 1 + e − ( w T x + b ) F(x)=\frac{1}{1+e^-(w^Tx+b)} F(x)=1+e(wTx+b)1中,处于决策边界上的点表示取得正例的概率和取得负例的概率相等

逻辑回归的求参过程利用了概率的特征,令 P ( Y = 1 ∣ x ) = p ( x ) , P ( Y = 0 ∣ x ) = 1 − p ( x ) P(Y=1|x)=p(x), P(Y=0|x)=1-p(x) P(Y=1x)=p(x),P(Y=0x)=1p(x),由于函数 F ( x ) F(x) F(x)的概率密度函数 f ( x ) f(x) f(x)为一条钟形曲线,为了使这条钟形曲线更好地拟合所有样本的分布情况,因此使用最大似然估计法求参数

似然函数 L ( w ) = ∏ [ p ( x i ) y i ] [ 1 − p ( x i ) 1 − y i ] L(w)=\prod_{}^{} {[p(x_i)^{y_i}]}[1-p(x_i)^{1-y_i}] L(w)=[p(xi)yi][1p(xi)1yi],对等式两边同取对数,写成对数似然函数并一通化简为: L ( w ) = ∑ [ y i ( w ⋅ x i ) − l n ( 1 + e w ⋅ x i ) ] L(w)=\sum_{}{[y_i(w·x_i)-ln(1+e^{w·x_i})]} L(w)=[yi(wxi)ln(1+ewxi)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值