Ella1019
码龄4年
求更新 关注
提问 私信
  • 博客:3,894
    社区:2
    3,896
    总访问量
  • 7
    原创
  • 39
    粉丝
  • 26
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
加入CSDN时间: 2021-09-16
博客简介:

Ella1019的博客

查看详细资料
个人成就
  • 获得64次点赞
  • 内容获得5次评论
  • 获得69次收藏
  • 原力等级
    原力等级
    1
    原力分
    81
    本月获得
    0
创作历程
  • 5篇
    2024年
  • 2篇
    2023年
成就勋章
TA的专栏
  • 算法笔记
    5篇
  • 实习准备
    5篇
  • 机器学习笔记
    2篇

TA关注的专栏 4

TA关注的收藏夹 0

TA关注的社区 8

TA参与的活动 0

创作活动更多

开源数据库 KWDB 社区征文大赛,赢取千元创作基金!

提交参赛作品,有机会冲刺至高2000元的创作基金,快来参与吧!

去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

2024春招冲刺算法笔记

算法刷题之旅继续!!!现在刷的题库「2024春招冲刺百题计划」以及会有一些每日一题和补充相应类别比较特殊重要的题目语言javascript,会按照题型分类刷,只记录中等及以上的题目解法,简单题一般只会记录一些特殊规律做法目前还未刷完,持续更新~
原创
发布博客 2024.04.18 ·
788 阅读 ·
30 点赞 ·
0 评论 ·
16 收藏

算法入门学习笔记(四)

目前力扣75已经完结。本笔记用于记录刷题过程中遇到的中等及以上难度的题和一些特殊算法思想,语言大部分会用 JavaScript 来刷题,也有的会用C++和Java承接,继续刷LeetCode75,同时也做每日一题,进行算法扫盲。
原创
发布博客 2024.04.11 ·
330 阅读 ·
5 点赞 ·
1 评论 ·
5 收藏

算法入门学习笔记(三)

本笔记用于记录刷题过程中遇到的中等及以上难度的题和一些特殊算法思想,语言大部分会用 JavaScript 来刷题,也有的会用C++和Java承接算法笔记(二),继续刷LeetCode75,同时也做每日一题,进行算法扫盲。
原创
发布博客 2024.04.01 ·
333 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

算法入门学习笔记(二)

本笔记用于记录刷题过程中遇到的中等及以上难度的题和一些特殊算法思想,语言大部分会用 JavaScript 来刷题,也有的会用C++和Java承接算法笔记(一),继续刷LeetCode75,同时也做每日一题,进行算法扫盲。
原创
发布博客 2024.03.21 ·
828 阅读 ·
10 点赞 ·
1 评论 ·
15 收藏

算法入门学习笔记(一)

最近在准备面试,投递岗位主要是前端,但是本人也有点想转后端,所以算法题必刷不可。本笔记用于记录刷题过程中遇到的中等及以上难度的题和一些特殊算法思想,目前是先把LeetCode75刷完,进行算法扫盲唉,没想到上一次刷力扣都是一年前了,这一次争取刷题量大一点,坚持的久一点,会持续更新的算法,启动!
原创
发布博客 2024.03.11 ·
883 阅读 ·
17 点赞 ·
0 评论 ·
30 收藏

机器学习笔记(二)机器学习模型验证

损失衡量的是模型在监督学习中预测结果的好坏一些用于分类的指标Precision: 对某一个具体的类的预测Recall: 对某一个具体的类的预测处理二分类问题ROC曲线:接收者操作特征(receiveroperating characteristic), roc曲线上每个点反映着对同一信号刺激的感受性。横轴:假正类率 (false postive rate, FPR),特异度,划分实例中所有负例占所有负例的比例;TNR=1-FPR。
原创
发布博客 2023.05.15 ·
394 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

机器学习笔记(一)机器学习常用模型和算法

每次训练一个新的树就是去拟合梯度负数,每一棵树学的是之前所有树结论和的残差,这个残差就是一个加预测值后能得真实值的累加量。具体操作是将一个像素点与它周围的数据点进行聚合统计,缩减特征图的尺寸,然后对其相邻的区域取均值或最大值,进一步减少参数量。前一个卷积层专注于的相对低级的特征,后一个卷积层整合前一个卷积层的特征,形成相对复杂的特征。如果某个属性的分类很多,也就是分叉超多,那么该属性下的样本就很少,此时的信息增益就非常高。卷积核大小可以指定为小于输入图像尺寸的任意值,卷积核越大,可提取的输入特征越复杂。
原创
发布博客 2023.05.15 ·
338 阅读 ·
0 点赞 ·
2 评论 ·
3 收藏