题目
给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
题解
设两指针 i,j,指向的水槽板高度分别为 h[i], h[j], 此状态下水槽面积为 S(i, j),由于可容纳水的高度由两板中的 短板 决定,因此可得如下 面积公式:S(i, j) = min(h[i], h[j]) * (j - i)
在每个状态下,无论长板或短板向中间收窄一格,都会导致水槽 底边宽度 −1−1 变短:
- 若向内 移动短板 ,水槽的短板 min(h[i],h[j]) 可能变大,因此下个水槽的面积 可能增大 。
- 若向内 移动长板 ,水槽的短板 min(h[i],h[j]) 不变或变小,因此下个水槽的面积 一定变小 。
复杂度分析
时间复杂度
O(N) : 双指针遍历一次底边宽度
空间复杂度
O(1) : 变量 res 使用常数额外空间。
代码
/**
* @param {number[]} height
* @return {number}
*/
var maxArea = function(height) {
let i = 0, j = height.length - 1, res = 0;
while(i < j){
res = height[i] < height[j]? Math.max(res, (j-i)*height[i++]): Math.max(res, (j-i)*height[j--])
}
return res
};
height[i++] 操作,先 i 的取值,i 再加1;height[j--] 同理。
参考资料:https://leetcode.cn/problems/container-with-most-water/solution/container-with-most-water-shuang-zhi-zhen-fa-yi-do/
来源:力扣(LeetCode)