EmilyHoward的博客

越努力越幸运。

1256 乘法逆元

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的。
Input
输入2个数M, N中间用空格分隔(1 <= M < N <= 10^9)
Output
输出一个数K,满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的。
Input示例
2 3
Output示例
2

扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式: ax+by = gcd(a, b) =d(解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。

K * M % N = 1相当于 M*K  -N * X= 1,变成不定方程x*m+y*n=gcd(m,n)的形式,且m,n互质,则gcd(m,n)=1,然后用exgcd求解不定方程即可。

//小小地讲一下exgcd求不定方程原理 
对于ax+by=gcd(a,b); 
我们设一下a>b,在简单直接把b=0时,gcd(a,b)=a.此时,x=1,y=0; 
接着,a>b>0,我们这里可以摆两个式子:①:ax1+by1=gcd(a,b);继续,②:bx2+(a mod b)y2=gcd( b , a mod b );第二个式子为何呢?这就是gcd的辗转相除法的算法,gcd(a,b)=gcd(b,a mod b)
然后我们就能将gcd左边两个等式列个等式:ax1+by1=bx2+(a mod b)y2;额。。。a mod b可以写成?a-(a/b)b对吧,那么等式变成ax1+ by1= bx2+ (a - (a / b) * b)y2=bx2+ay2 - (a / b)by2 ;我们把ax1+ by1=bx2+ay2 - (a / b)by2拎出来,整理一下,写成:ax1+by1=ay2+b(x2-(a/b)y2); 那么很明显我们可以得到,x1=y2,y1=x2-(a/b)y2; 

这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.

(不大理解就先套模板。。。。)

#include<stdio.h>
#include<algorithm>
typedef long long ll;
using namespace std;
ll m,n,k;

void extend_Euclid(ll a,ll b,ll &x,ll &y)
{
if(b==0)
{
x=1;
y=0;
return ;
}
extend_Euclid(b,a%b,x,y);
int tmp=x;
x=y;
y=tmp-(a/b)*y;
}
int main()
{
scanf("%lld %lld",&m,&n);
ll x,y;
extend_Euclid(m,n,x,y);
while(x<0)
x+=n;
printf("%d\n",x);
return 0;
}

https://blog.csdn.net/KEYboarderQQ/article/details/52493627?locationNum=2&fps=1


阅读更多
个人分类: 数学问题 51Nod
上一篇1264 线段相交
下一篇1134 最长递增子序列
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭