【Qwen2 微调之旅】Lora 对 Qwen2-7B-Instruct 的微调实战手册

引言

在人工智能领域,自然语言处理(NLP)一直是研究的热点之一。随着深度学习技术的不断发展,大型预训练语言模型(如Qwen2-7B-Instruct)在理解与生成自然语言方面取得了显著的进展。然而,这些模型往往需要大量的计算资源和数据来进行微调,以适应特定的应用场景。Lora微调技术作为一种高效的模型优化手段,为解决这一问题提供了新的思路。本文将深入探讨Lora微调技术在Qwen2-7B-Instruct模型上的应用,旨在为读者提供一种高效、低成本的模型定制化方法。

一、Lora简介

1.Lora微调技术概述

Lora微调是一种基于低秩矩阵的微调方法,它通过在模型的权重矩阵中引入低秩结构来减少参数数量,从而降低模型的存储和计算需求。这种方法在保持模型性能的同时,显著提高了模型的灵活性和适应性。

2.Qwen2-7B-Instruct模型简介

Qwen2-7B-Instruct,一款精心设计的高级预训练语言模型,拥有70亿参数,专注于提升对指令性文本的精准理解和高效生成。它在自然语言处理(NLP)的多个专业领域中,如文本摘要、情感分析、机器翻译等,均展现出了卓越的处理能力和适应性。Qwen2-7B-Instruct的先进性能不仅体现在其对语言的深度解析上,更在于其能够快速、准确地执行和回应复杂的语言指令,为专业级的语言任务提供了强大的支持和解决方案。

3.Lora微调的优势

  • 与传统的全参数微调相比,Lora微调具有以下优势:

  • 参数减少:通过低秩分解,大幅减少了模型的参数量。

  • 计算效率:降低了模型训练和推理时的计算需求。

  • 灵活性:能够快速适应不同的应用场景。

二、技术

1.Lora微调的工作原理

Lora微调通过在模型的权重矩阵中引入低秩矩阵,实现了对模型的轻量级微调。具体来说,它将权重矩阵分解为两个较小的矩阵的乘积,这两个矩阵分别对应于原始权重矩阵的行和列。

2.Lora微调在Qwen2-7B-Instruct中的应用

通过在Qwen2-7B-Instruct模型上实施Lora微调技术,我们能够针对特定指令性文本任务进行精准优化,显著提升模型在这些任务上的表现力和准确性。这种微调方法不仅增强了模型对专业指令的响应能力,还进一步拓宽了其在复杂语言处理场景中的应用潜力。

三、应用场景

1.问答系统

Lora微调后的Qwen2-7B-Instruct可以用于构建更加智能的问答系统,提供更准确的答案。

2.自动摘要生成

在自动摘要生成任务中,微调后的模型能够更好地理解文本内容,生成更加精炼和准确的摘要。

3.指令执行

对于需要执行复杂指令的应用,如智能家居控制,微调后的模型能够更准确地解析和执行用户的指令。

四、代码实践

1.环境准备

介绍如何在Python环境中搭建Lora微调所需的环境,包括必要的库和依赖。

PyTorch: 2.1.0

CUDA:12.1

GPU:RTX 4090D(24GB)

Ubuntu 22.04.3 LTS

2.安装依赖

安装相关的依赖包

python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip install modelscope==1.9.5
pip install "transformers>=4.39.0"
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.27
pip install transformers_stream_generator==0.0.4
pip install datasets==2.18.0
pip install peft==0.10.0
# 可选
MAX_JOBS=8 pip install flash-attn --no-build-isolation


3.模型下载

使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为模型的下载路径。

在 /root/autodl-tmp 路径下新建 d.py 文件并在其中输入以下内容,粘贴代码后请及时保存文件,如下图所示。并运行 python /root/autodl-tmp/d.py 执行下载,模型大小为 15GB,下载模型大概需要 5 分钟。

import torchfrom modelscope import snapshot_download, AutoModel, AutoTokenizerimport osmodel_dir = snapshot_download('qwen/Qwen2-7B-Instruct', cache_dir='/root/autodl-tmp', revision='master')

下载成功如下:

4.导入依赖包

from datasets import Datasetimport pandas as pdfrom transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, Trainer, GenerationConfig

5.数据集准备

LLM 的微调一般指指令微调过程。所谓指令微调,是说我们使用的微调数据形如:

{

“instruction”:“回答以下用户问题,仅输出答案。”,

“input”:“1+1等于几?”,

“output”:“2”

}

其中,instruction是用户指令,告知模型其需要完成的任务;input 是用户输入,是完成用户指令所必须的输入内容;output 是模型应该给出的输出。即我们的核心训练目标是让模型具有理解并遵循用户指令的能力。因此,在指令集构建时,我们应针对我们的目标任务,针对性构建任务指令集。下面是对话指令集部分内容:

6.数据加载查看

# 将JSON文件转换为CSV文件
df = pd.read_json('../dataset/huanhuan.json')
ds = Dataset.from_pandas(df)

查看前面5条



`ds[:5]`


输出:



{'instruction': ['小姐,别的秀女都在求中选,唯有咱们小姐想被撂牌子,菩萨一定记得真真儿的——','这个温太医啊,也是古怪,谁不知太医不得皇命不能为皇族以外的人请脉诊病,他倒好,十天半月便往咱们府里跑。','嬛妹妹,刚刚我去府上请脉,听甄伯母说你来这里进香了。','嬛妹妹,我虽是一介御医,俸禄微薄,可是我保证会一生一世对你好,疼爱你,保护你,永远事事以你为重。本来没半月一次到府上去请脉,能够偶尔见一次妹妹的笑靥,已经心满意足了,可谁知——而且我也知道,妹妹心里是不愿意去殿选的。','实初虽然唐突了妹妹,却是真心实意地希望妹妹不要去应选,这不仅仅是因为我心里一直把妹妹当成……其实更是因为甄伯父曾经救过家父的性命。'],'input': ['', '', '', '', ''],'output': ['嘘——都说许愿说破是不灵的。','你们俩话太多了,我该和温太医要一剂药,好好治治你们。','出来走走,也是散心。','实初哥哥这么说,就枉顾我们一直以来的兄妹情谊了,嬛儿没有哥哥,一直把你当作自己的亲哥哥一样看待,自然相信哥哥会待妹妹好的——自然了,以后有了嫂子,你也会对嫂子更好。','我们两家是世交,昔年恩义不过是父亲随手之劳,不必挂怀。']}

7.加载分词器模型

加载本地的Qwen2-7B-Instruct模型

tokenizer = AutoTokenizer.from_pretrained('/root/autodl-tmp/qwen/Qwen2-7B-Instruct', use_fast=False, trust_remote_code=True)``tokenizer

输出:

8.数据格式化处理

Lora训练的数据是需要经过格式化、编码之后再输入给模型进行训练的,我们一般需要将输入文本编码为 input_ids,将输出文本编码为 labels,编码之后的结果都是多维的向量。我们首先定义一个预处理函数,这个函数用于对每一个样本,编码其输入、输出文本并返回一个编码后的字典

1)定义处理函数



`def process_func(example):`

  `MAX_LENGTH = 384    # Llama分词器会将一个中文字切分为多个token,因此需要放开一些最大长度,保证数据的完整性`  `input_ids, attention_mask, labels = [], [], []`  `instruction = tokenizer(f"<|im_start|>system\n现在你要扮演皇帝身边的女人--甄嬛<|im_end|>\n<|im_start|>user\n{example['instruction'] + example['input']}<|im_end|>\n<|im_start|>assistant\n", add_special_tokens=False)  # add_special_tokens 不在开头加 special_tokens`  `response = tokenizer(f"{example['output']}", add_special_tokens=False)`  `input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]`  `attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1]  # 因为eos token咱们也是要关注的所以 补充为1`  `labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]``  if len(input_ids) > MAX_LENGTH:  # 做一个截断`    `input_ids = input_ids[:MAX_LENGTH]`    `attention_mask = attention_mask[:MAX_LENGTH]`    `labels = labels[:MAX_LENGTH]`    `  return {`    `"input_ids": input_ids,`    `"attention_mask": attention_mask,`    `"labels": labels`  `}`

补充说明:Qwen2 采用的Prompt Template格式如下



`<|im_start|>system`

`You are a helpful assistant.<|im_end|>``<|im_start|>user``你是谁?<|im_end|>``<|im_start|>assistant``我是一个有用的助手。<|im_end|>`

2)数据集处理



`tokenized_id = ds.map(process_func, remove_columns=ds.column_names)`

`tokenized_id`

输出:



`Dataset({`

`features: ['input_ids', 'attention_mask', 'labels'],``num_rows: 3729``})`

3)查看input_ids数据格式是否正确



`tokenizer.decode(tokenized_id[0]['input_ids'])`


输出:



`'<|im_start|>system\n现在你要扮演皇帝身边的女人--甄嬛<|im_end|>\n<|im_start|>user\n小姐,别的秀女都在求中选,唯有咱们小姐想被撂牌子,菩萨一定记得真真儿的——<|im_end|>\n<|im_start|>assistant\n嘘——都说许愿说破是不灵的。<|endoftext|>'`


4)labels查看



`tokenizer.decode(list(filter(lambda x: x != -100, tokenized_id[1]["labels"])))`


输出:

'你们俩话太多了,我该和温太医要一剂药,好好治治你们。<|endoftext|>'

9.加载模型

加载本地的Qwen2-7B-Instruct模型



`import torch`

`model = AutoModelForCausalLM.from_pretrained('/root/autodl-tmp/qwen/Qwen2-7B-Instruct', device_map="auto",torch_dtype=torch.bfloat16)``model`

模型信息如下:



`Loading checkpoint shards: 0%|          | 0/4 [00:00<?, ?it/s]`

`[9]:``Qwen2ForCausalLM(``(model): Qwen2Model(``(embed_tokens): Embedding(152064, 3584)``(layers): ModuleList(``(0-27): 28 x Qwen2DecoderLayer(``(self_attn): Qwen2SdpaAttention(``(q_proj): Linear(in_features=3584, out_features=3584, bias=True)``(k_proj): Linear(in_features=3584, out_features=512, bias=True)``(v_proj): Linear(in_features=3584, out_features=512, bias=True)``(o_proj): Linear(in_features=3584, out_features=3584, bias=False)``(rotary_emb): Qwen2RotaryEmbedding()``)``(mlp): Qwen2MLP(``(gate_proj): Linear(in_features=3584, out_features=18944, bias=False)``(up_proj): Linear(in_features=3584, out_features=18944, bias=False)``(down_proj): Linear(in_features=18944, out_features=3584, bias=False)``(act_fn): SiLU()``)``(input_layernorm): Qwen2RMSNorm()``(post_attention_layernorm): Qwen2RMSNorm()``)``)``(norm): Qwen2RMSNorm()``)``(lm_head): Linear(in_features=3584, out_features=152064, bias=False)``)`

开启梯度检查,查看精度



`model.enable_input_require_grads() # 开启梯度检查点时,要执行该方法`

`model.dtype # 查看精度`

输出:

torch.bfloat16

10.lora配置

配置说明:

  • task_type:模型类型

  • target_modules:需要训练的模型层的名字,主要就是attention部分的层,不同的模型对应的层的名字不同,可以传入数组,也可以字符串,也可以正则表达式。

  • r:lora的秩,具体可以看Lora原理

  • lora_alpha:Lora alaph,具体作用参见Lora 原理

  • Lora的缩放是啥嘞?就是lora_alpha/r, 在这个LoraConfig中缩放就是4倍。

from peft import LoraConfig, TaskType, get_peft_model``config = LoraConfig(`  `task_type=TaskType.CAUSAL_LM,`  `target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],`  `inference_mode=False, # 训练模式`  `r=8, # Lora 秩`  `lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理`  `lora_dropout=0.1# Dropout 比例``)``config

输出:



`LoraConfig(peft_type=<PeftType.LORA: 'LORA'>, auto_mapping=None, base_model_name_or_path=None, revision=None, task_type=<TaskType.CAUSAL_LM: 'CAUSAL_LM'>, inference_mode=False, r=8, target_modules={'o_proj', 'down_proj', 'q_proj', 'gate_proj', 'up_proj', 'k_proj', 'v_proj'}, lora_alpha=32, lora_dropout=0.1, fan_in_fan_out=False, bias='none', use_rslora=False, modules_to_save=None, init_lora_weights=True, layers_to_transform=None, layers_pattern=None, rank_pattern={}, alpha_pattern={}, megatron_config=None, megatron_core='megatron.core', loftq_config={}, use_dora=False, layer_replication=None)`


加载lora配置



`model = get_peft_model(model, config)`

`config`

输出:



`LoraConfig(peft_type=<PeftType.LORA: 'LORA'>, auto_mapping=None, base_model_name_or_path='/root/autodl-tmp/qwen/Qwen2-7B-Instruct', revision=None, task_type=<TaskType.CAUSAL_LM: 'CAUSAL_LM'>, inference_mode=False, r=8, target_modules={'o_proj', 'down_proj', 'q_proj', 'gate_proj', 'up_proj', 'k_proj', 'v_proj'}, lora_alpha=32, lora_dropout=0.1, fan_in_fan_out=False, bias='none', use_rslora=False, modules_to_save=None, init_lora_weights=True, layers_to_transform=None, layers_pattern=None, rank_pattern={}, alpha_pattern={}, megatron_config=None, megatron_core='megatron.core', loftq_config={}, use_dora=False, layer_replication=None)`


查看可训练参数



`model.print_trainable_parameters()`


**11.**配置训练参数

TrainingArguments这个类的源码也介绍了每个参数的具体作用,当然大家可以来自行探索,这里就简单说几个常用的。

  • output_dir:模型的输出路径

  • per_device_train_batch_size:顾名思义 batch_size

  • gradient_accumulation_steps: 梯度累加,如果你的显存比较小,那可以把 batch_size 设置小一点,梯度累加增大一些。

  • logging_steps:多少步,输出一次log

  • num_train_epochs:顾名思义 epoch

  • gradient_checkpointing:梯度检查,这个一旦开启,模型就必须执行model.enable_input_require_grads(),这个原理大家可以自行探索,这里就不细说了。

args = TrainingArguments(`  `output_dir="./output/Qwen2_7B_instruct_lora",`  `per_device_train_batch_size=4,`  `gradient_accumulation_steps=4,`  `logging_steps=10,`  `num_train_epochs=3,`  `save_steps=10, # 为了快速演示,这里设置10,建议你设置成100`  `learning_rate=1e-4,`  `save_on_each_node=True,`  `gradient_checkpointing=True``)

12.模型训练

trainer = Trainer(`  `model=model,`  `args=args,`  `train_dataset=tokenized_id,`  `data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),``)``trainer.train()

训练效果:

13.模型合并

将训练后的lora权重加载到原来的模型中,形成新的模型

from transformers import AutoModelForCausalLM, AutoTokenizer``import torch``from peft import PeftModel``mode_path = '/root/autodl-tmp/qwen/Qwen2-7B-Instruct/'``lora_path = './output/Qwen2_instruct_lora/checkpoint-10' # 这里改称你的 lora 输出对应 checkpoint 地址``# 加载tokenizer``tokenizer = AutoTokenizer.from_pretrained(mode_path, trust_remote_code=True)``# 加载模型``model = AutoModelForCausalLM.from_pretrained(mode_path, device_map="auto",torch_dtype=torch.bfloat16, trust_remote_code=True).eval()``# 加载lora权重``model = PeftModel.from_pretrained(model, model_id=lora_path)

14.模型推理

基于合并后(加载了lora权重)的模型进行推理

prompt = "你是谁?"``messages = [`  `#{"role": "system", "content": "现在你要扮演皇帝身边的女人--甄嬛"},`  `{"role": "user", "content": "假设你是皇帝身边的女人--甄嬛。"},`  `{"role": "user", "content": prompt}``]``inputs = tokenizer.apply_chat_template(messages,add_generation_prompt=True,tokenize=True,return_tensors="pt",return_dict=True).to('cuda')``gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}``with torch.no_grad():`  `outputs = model.generate(**inputs, **gen_kwargs)`  `outputs = outputs[:, inputs['input_ids'].shape[1]:]`  `print(tokenizer.decode(outputs[0], skip_special_tokens=True))

输出:

我是甄嬛,家父是大理寺少卿甄远道。

结语

Lora微调技术为大型预训练语言模型的定制化提供了一种高效、低成本的解决方案。通过本文的介绍和代码实践,读者可以更好地理解Lora微调的原理和应用,将其应用于Qwen2-7B-Instruct模型,以满足特定场景的需求。随着技术的不断进步,我们期待Lora微调能够在更广泛的领域发挥更大的作用。

随着大模型的持续爆火,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说现在大模型就是当下风口,是一个可以改变自身的机会,就看我们能不能抓住了。

那么,我们该如何学习大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

以上的AI大模型学习资料,都已上传至CSDN,需要的小伙伴可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值