AI大模型实战:满屏的智能体 AI

探索智能体作为自主机器人操作系统在数字与实体自主系统中的未来发展方向。

介绍

在之前的帖子中,我着重讨论了AI智能体(Agents)日益增长的能力和趋于融合的架构。

从今天开始,我想把重点转向它们不断演变的生态系统,以及AI智能体将如何在数字空间中体现自主性。

AI智能体通过探索和与数字领域(如网络和移动操作系统)的互动来获得自主性。

然而,最近的研究也开始关注模拟作为AI体现的新前沿,通过模拟现实世界的场景,智能体可以增强其学习和决策能力。

AI智能体作为机器人操作系统
展望未来,我相信AI智能体将作为物理机器人系统的操作系统(OS)。就像传统OS控制硬件和软件功能一样,AI智能体将在管理自主机器人方面发挥关键作用——从个人助手到工业机器人。

这意味着AI智能体不仅会处理信息或执行孤立的任务,还会监督整个决策和行动过程。它们在机器人系统中的体现将开启AI、机器与物理世界互动的新时代。

融合
通过AI智能体,数字和物理领域的融合不仅会优化流程,还会彻底改变机器人如何融入我们的日常生活。

  1. AI架构的融合:可以观察到一种趋势,即将多个AI模型和框架集成起来,以提升复杂环境中的适应性和功能性,从而使AI智能体更加稳健和多功能。
    2. 探索和数字领域互动:AI智能体通过探索如网络和移动操作系统等数字领域来获得自主性,这是大多数当前AI智能体的常态,它们依赖这些环境来进行数据输入和任务执行。
    模拟中的体现:由于模拟提供了一个安全和可控的环境,使AI可以在部署到现实世界之前学习、实验并提高其决策技能,这种做法正变得越来越普遍,尤其是在机器人和自主系统中。
    3. AI智能体作为机器人操作系统:在不久的将来,AI智能体可以作为机器人系统的操作系统。随着驱动操作系统的出现,这些系统可以管理物理设备中的各种自主过程,尤其是在机器人中,智能体监督导航、任务执行和对环境的适应性反应。
    4. 物理和数字领域的融合:AI智能体在机器人中的不断增加体现表明,这些系统将更紧密地与物理世界融合,而不仅仅是数字互动。

总结
当然……将AI智能体从数字领域转移到物理世界,意味着复杂的程度有了实质性的飞跃。

不同于数字环境中的可控和可预测设置,物理世界引入了大量不可控变量,从传感器限制到现实物理法则和意外障碍。

AI智能体的物理体现,例如机器人,需要感知、运动技能和实时决策的复杂集成,所有这些都在一个不可预测且往往混乱的环境中进行。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值