智能运维新趋势:AIOps与GPT大模型的结合

一、前言

得益于交流群内运维小伙伴的热心分享,我才得以看到了近几年的运维行业的众多相关报告。这些报告涵盖了方方面面,有对整个运维行业市场规模和增长趋势的深度分析,有对各种新兴运维技术,如自动化运维、智能运维、容器化技术等的详细阐述,也有对不同行业的运维最佳实践的经验总结。

令人比较深刻的报告是《中国智能运维实践年度报告(2023-2024)》,新年度的报告紧跟现阶段的技术趋势,已经将AIOps与GPT大模型进行了结合,这意味着智能运维将面向更高的自动化程度、更强的预测能力、更广放的应用领域。

再细品,我们当下接触更多的是大语言模型,仅是来辅助我们写代码、内容生成、创作等简单场景,而大模型能融入真实的运维工作场景有哪些呢?就让报告中的内容来刷新下我们的三观吧!

二、运维大模型

在GPT等大语言模型蓬勃发展的当下,许多产业开始结合自身的数据特点,开发垂直领域的专属GPT模型。在智能运维当中,结合大语言模型、时序大模型和时空大模型的优势,为自动化巡检、故障处理、智能分析与决策等领域带来了全新的应用前景。

运维大模型的优势在于整合了多种人工智能技术,包括大语言模型、时序大模型和时空大模型,为智能运维提供了全面而强大的支持,使运维工作更高效、准确。

  • 通过AIops结构化大模型结合运维图谱的知识内容与大语言模型的推理能力,运维大模型能够支持复杂决策场景的处理,为企业提供更科学、可靠的决策支持。

  • 时序大模型在预测未来趋势和识别异常模式方面发挥关键作用,帮助企业提前发现潜在问题,做出相应调整,提高系统稳定性,进一步利用更加细粒度的模型组件。

  • 时空大模型则可以结合实时数据和空间关联性,能够优化资源分配、巡检路径等,提高运维效率,使运维工作更具针对性和智能化。

三、应用场景

1.自动化巡检

  • 大语言模型分析历史数据和运维文档,运维大模型能够自动生成巡检报告和检测计划,从而提高巡检效率和准确性。

  • 时序大模型用于识别异常模式,提前发现潜在问题,有助于及时应对潜在风险。

  • 时空大模型结合实时数据和空间关联性,优化巡检路径,进一步提高运维效率,使巡检过程更加智能化和精准化。

2.故障处理

  • 大语言模型分析历史故障数据,预测潜在故障点和解决方案,为故障处理提供更快速的响应和解决方案。

  • 时序大模型监测实时数据,快速定位故障源,有助于缩短故障处理时间,提升系统稳定性。

  • 时空大模型结合设备位置和环境信息,辅助故障处理过程,使故障处理更具针对性和高效性。

3.资源优化

  • 大语言模型分析资源利用率数据,提出优化建议并制定资源分配策略,帮助企业实现资源的最大化利用。

  • 时序大模型预测未来资源需求,实现动态资源调整,使资源分配更加灵活和智能化。

  • 时空大模型考虑设备位置和网络拓扑,优化资源分配和调度,进一步提升资源利用效率和系统性能。

4.智能问答

  • 大语言模型用于自动生成运维知识库和文档,支持智能问答系统,提供更快速、准确的问题解答。

  • 时序大模型结合历史数据,提供更准确的问题答案,帮助用户快速解决问题。

  • 时空大模型考虑环境因素,提供个性化的解决方案,提升用户体验和问题解决效率。

5.智能决策

  • 运维大模型结合大语言模型的知识表示和推理能力,支持复杂决策场景的处理,提供更科学、可靠的决策支持。

  • 时序大模型分析趋势数据,辅助决策制定,帮助企业更好地把握发展方向。

  • 时空大模型考虑环境影响,提供全局决策建议,帮助企业做出更明智的决策,推动业务发展。

6.安全管理

  • 大语言模型分析安全日志和事件数据,识别异常行为和潜在威胁,加强安全防护和威胁识别能力。

  • 时序大模型监测安全指标,实时检测安全漏洞,帮助企业及时应对安全风险。

  • 时空大模型结合设备位置和访问模式,加强安全管理和访问控制,提升系统安全性和数据保护水平。

四、总结

以上应用场景结合了大语言模型、时序大模型和时空大模型的优势,提升了运维工作的智能化和自动化水平,并推动运维领域向着智能化、自动化的方向发展。

而现阶段我们还只是沉浸在大预言模型中不能自拔,而智能运维与大模型的结合之路需要从新的视角去理解、学习并应用。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值