对于程序员转行方向的推荐,可以基于当前的技术趋势、市场需求以及程序员的个人技能和兴趣来综合考虑。以下是一些推荐的转行方向:
1. 数据分析师
- 推荐理由:随着大数据时代的到来,数据分析师成为了一个非常热门的职业。程序员具备处理和分析数据的能力,能够利用编程技能来提取、转换和加载数据,进而进行深入的数据分析和挖掘,为企业决策提供有力的支持。
- 技能要求:熟练掌握SQL、Python等数据处理和分析工具,了解数据可视化技术,具备良好的业务理解能力和逻辑思维能力。
2. 人工智能工程师
- 推荐理由:人工智能是当前科技领域的热点,具有广阔的发展前景。程序员可以通过学习机器学习、深度学习等人工智能技术,参与到人工智能系统的研发和应用中,为企业创造更大的价值。
- 技能要求:掌握Python、TensorFlow、PyTorch等人工智能开发工具和框架,了解机器学习算法和原理,具备数据分析和模型调优的能力。
3. 网络安全专家
- 推荐理由:随着网络攻击的日益频繁和复杂,网络安全问题越来越受到重视。程序员可以通过学习网络安全知识,成为网络安全专家,帮助企业保护数据和系统免受攻击。
- 技能要求:了解网络协议、操作系统、数据库等基础知识,掌握网络安全攻防技术,具备漏洞挖掘和修复的能力。
4. 产品经理
- 推荐理由:产品经理是连接技术和市场的桥梁,负责产品的规划、设计、推广等全生命周期管理。程序员对产品的设计和开发有深入的了解,可以更容易地转型为产品经理,将技术背景与市场需求相结合,推动产品的成功。
- 技能要求:具备良好的沟通协调能力、市场洞察力和用户同理心,了解产品设计和开发流程,掌握项目管理工具和方法。
5. 创业者
- 推荐理由:对于有创业梦想和独立精神的程序员来说,创业是一个值得考虑的方向。程序员可以利用自己的技术背景和创新能力,开发具有市场竞争力的产品或服务,并通过创业实现个人价值和社会价值。
- 技能要求:除了技术背景外,还需要具备商业思维、市场分析能力、团队管理能力等创业所需的综合素质。
其他推荐方向
- 前端开发工程师:随着互联网的快速发展,前端开发工程师的需求量也在不断增加。程序员可以利用自己的编程技能,学习前端开发技术,如HTML、CSS、JavaScript等,参与到网页和移动应用的开发中。
- 测试开发工程师:测试开发是软件开发过程中不可或缺的一环。程序员可以转型为测试开发工程师,负责设计测试方案、编写测试脚本、执行测试并分析结果,确保软件的质量和稳定性。
- 系统架构师:对于技术功底深厚的程序员来说,系统架构师是一个具有挑战性的职业方向。系统架构师需要负责整个系统的架构设计、技术选型、性能优化等工作,确保系统的可扩展性、可靠性和安全性。
需要注意的是,转行不仅需要具备一定的技能和知识储备,还需要充分了解目标行业的市场需求和发展趋势。因此,在选择转行方向时,程序员应该结合自己的实际情况和兴趣爱好进行综合考虑。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。