今天开始学习贝叶斯网络,写一点点初级的认识。从概率论的内容开始,过渡到概率图模型以及贝叶斯网络。如果有错误,有读者看到了欢迎批评指正。
一、条件概率P( A | B )
P(A|B)=P(AB)P(B)=m(AB)Ωm(B)Ω
二、全概率公式
设事件A1,A2,...,An是样本空间Ω的一个分割(划分),即Ai两两互不相容。且
∑i=1NAi=Ω
全概率公式为:
P(B)=∑i=1NP(AiB)=∑i=1NP(Ai)P(B|Ai)
意思是:一事件B在大样本空间上发生的概率 = 该事件在大样本空间的各个小划分空间上发生的概率之和。
三、从二继续推导贝叶斯公式
P(Ai|B)=P(AiB)P(B)=P(Ai)P(B|Ai)∑Ni=1P(AiB)=P(Ai)P(B|Ai)∑Ni=1P(Ai)P(B|Ai)
即
P(Ai|B)=P(Ai)P(B|Ai)∑Ni=1P(Ai)P(B|Ai)
四、例子
| 1 | s0 | s1 |
| i0 | 0.95 | 0.05 |
| i1 | 0.2 | 0.8 |
刚开始用CSDN,写得太累了,先留这么多,下次继续编辑此篇(也许贴图更快)
未完待续~ ( ̄o ̄) . z Z。
五、经常迷惑条件概率这个事情,迷惑的点是 考虑P( A|B ) 和 P( AB )的时候容易混淆。记住:二者的区别是样本点相同,样本空间发生变化!
P(AB)= m(AB) / m(Ω)
P(A|B)=m(AB) / m(B)
同样,P(A|B)=m(AB) / m(A)
样本点都是m(AB)
2222

被折叠的 条评论
为什么被折叠?



