调试错误:ValueError: Protocol message Feature has no "feature" field ——将MNIST数据转换TFRecord程序报错经历

在学习《Tensorflow:实战Google深度学习框架》,分享一下自己的出错经历。

一、TFRecord 文件中的数据都是通过 tf.train.Example Protocol Buffer 的格式存储的。

在7.1.2 样例程序,如下:

# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('D:\\Program Files\\Anaconda3\\envs\\tensorflow\\mnist\\input_data\\',one_hot=True)


def _int64_feature(value):       # 生成整数型的属性
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))


def _bytes_feature(value):       # 生成字符串型的属性
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))


images = mnist.train.images
labels = mnist.train.labels   # 训练数据所对应的正确答案,可作为一个属性保存在TFRecord中
pixels = images.shape[1]
num_examples_train = mnist.train.num_examples  # 训练数据的图像分辨率,可以作为Example中的一个属性


filename = "D:/Pyt
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值