[BZOJ4835] [Lydsy1704月赛] 遗忘之树 [乱搞]

Link
BZOJ - https://www.lydsy.com/JudgeOnline/problem.php?id=4835


直接在图 G 上 dp 。
考虑图 G 上的 u → v
u 能够连几条边到 v 呢 ?重点在于连边之后重心会不会变
如果图 G 中 v 为根的子树大小卜大于等于以 u 为根的子树的一半那么咋连边都没有问题
否则这个子树大小一定等于 u u u 为根子树大小的一半,此时你只能向以 v 为根的子树里面编号大于 u 的点连边。
(否则重心就会变嗷)
以此为依据计数即可,复杂度是 O ( n log ⁡ n ) O(n\log n) O(nlogn) 的。
某个子树有两个重心的情况需要特别分类讨论。


#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<ctime>
#include<cctype>
using namespace std;
#define R register
const int MAXN = 1e5 + 5;
const int MOD = 1e9 + 7;
int T, n, m, tot, Root;
int head[MAXN], nxt[MAXN], to[MAXN], Deg[MAXN], Size[MAXN];
long long F[MAXN];
#define add_edge(a, b) nxt[++tot] = head[a], head[a] = tot, to[tot] = b
void Sizel(const int& u)
{
	Size[u] = 1;
	for (int v, i = head[u]; i; i = nxt[i])
	{
		v = to[i];
		Sizel(v);
		Size[u] += Size[v];
	}
}
int Calc(const int& v, const int& u)
{
	int Ret = (v > u);
	for (int i = head[v]; i; i = nxt[i])
	{
		Ret += Calc(to[i], u);
	}
	return Ret;
}
void Solve(const int& u)
{
	for (int Half = (Size[u] >> 1), v, i = head[u]; i; i = nxt[i])
	{
		v = to[i];
		Solve(v);
		if ((!(Size[u]&1)) && (Size[v] == Half))
		{
			F[u] = F[u] * F[v] % MOD * Calc(v, u) % MOD;
		}
		else
		{
			F[u] = F[u] * F[v] % MOD * Size[v] % MOD;
		}
	}
}
int main()
{
	scanf("%d", &T);
	while (T--)
	{
		tot = 0;
		scanf("%d%d", &n, &m);
		fill(head, head + n + 1, 0); 
		fill(Deg, Deg + n + 1, 0);
		fill(F, F + n + 1, 1);
		for (R int u, v, i = 1; i <= m; ++i)
		{
			scanf("%d%d", &u, &v);
			add_edge(u, v);
			++Deg[v];
		}
		for (R int i = 1; i <= n; ++i)
		{
			if (!Deg[i])
			{
				Root = i;
				break;
			}
		}
		Sizel(Root);
		Solve(Root);
		printf("%lld\n", F[Root]);
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值