nyoj_42 一笔画问题

版权声明:本文为博主原创文章,未经博主允许...请随便转载(233...) https://blog.csdn.net/F010011100000/article/details/51297869

一笔画问题

时间限制:3000 ms  |  内存限制:65535 KB
难度:4
描述

zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,判断一个图是否能够用一笔画下来。

规定,所有的边都只能画一次,不能重复画。

 

输入
第一行只有一个正整数N(N<=10)表示测试数据的组数。
每组测试数据的第一行有两个正整数P,Q(P<=1000,Q<=2000),分别表示这个画中有多少个顶点和多少条连线。(点的编号从1到P)
随后的Q行,每行有两个正整数A,B(0<A,B<P),表示编号为A和B的两点之间有连线。
输出
如果存在符合条件的连线,则输出"Yes",
如果不存在符合条件的连线,输出"No"。
样例输入
2
4 3
1 2
1 3
1 4
4 5
1 2
2 3
1 3
1 4
3 4
样例输出
No
Yes

分析:

典型的欧拉通路(或回路)问题。

输入连线时直接统计每个点的度数。

从点1开始深搜,并用vis数组记录每个点是否被搜索到。

然后遍历每个点,统计度数为奇数的点的个数,当且仅当为2或0时,此图是欧拉回路(或通路),同时,若存在某个点没被搜索到,说明该图本来就不连通,不可能是欧拉回路(或通路)。

代码:

#include<cstdio>
#include<cstring>
struct Node
{
	int I;
	int m[1005];
}node[1005];
int visit[1005];
void dfs(int x)
{
	for(int i=0;i<node[x].I;i++)
	{
		if(!visit[node[x].m[i]])
		{
			visit[node[x].m[i]]=1;;
			dfs(node[x].m[i]);
		}
	}
}
int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		int n,m;
		int u,v;
		scanf("%d%d",&n,&m);
		memset(node,0,sizeof(node));
		memset(visit,0,sizeof(visit));
		for(int i=0;i<m;i++)
		{
			scanf("%d%d",&u,&v);
			int vis=0;
			for(int j=0;j<node[u].I;j++)
			{
				if(node[u].m[j]==v)
				{
					vis=1;
					break;
				}
			}
			if(!vis&&u!=v)
			{
				node[u].m[node[u].I]=v;
				node[u].I++;
			}
			vis=0;
			for(int j=0;j<node[v].I;j++)
			{
				if(node[v].m[j]==u)
				{
					vis=1;
					break;
				}
			}
			if(!vis)
			{
				node[v].m[node[v].I]=u;
				node[v].I++;
			}
		}
		visit[1]=1;
		dfs(1);
		int ok=0;
		int odd=0;
		for(int i=1;i<=n;i++)
		{
			if(node[i].I&&node[i].I%2)
				odd++;
			if(!visit[i])
			{
				ok=1;
				break;
			}
		}
		if(ok)
			printf("No\n");
		else if(odd!=2&&odd!=0)
			printf("No\n");
		else
			printf("Yes\n");
	}
	return 0;
}


阅读更多
换一批

没有更多推荐了,返回首页