下面我将以 MNIST 手写数字识别模型为例,从 剪枝 (Pruning) 和 量化 (Quantization) 两个常用方法出发,提供一套可实际动手操作的模型优化流程。此示例基于 TensorFlow/Keras 环境,示范如何先训练一个基础模型,然后对其进行剪枝和量化,最后验证优化后的模型性能。
目录
1. 整体流程概览
在之前博客中已经可以训练一个基础 MNIST 模型(train_mnist.py
)并成功获得 mnist_model.h5
的前提下,通常会按照以下顺序进行优化:
在模型训练好后,可以在mnist_project文件夹下找到mnist_model.h5,如下:
- 剪枝 (Pruning):减小模型大小、去除不重要的权重,生成
pruned_mnist_model.h5
。 - (可选)量化 (Quantization)