二、模型训练与优化(4):模型优化-实操

下面我将以 MNIST 手写数字识别模型为例,从 剪枝 (Pruning)量化 (Quantization) 两个常用方法出发,提供一套可实际动手操作的模型优化流程。此示例基于 TensorFlow/Keras 环境,示范如何先训练一个基础模型,然后对其进行剪枝和量化,最后验证优化后的模型性能。


目录

  1. 整体流程概览
  2. 模型剪枝 (Pruning)
    1. 安装依赖库
    2. 修改训练脚本实现剪枝
    3. 如何运行剪枝脚本
    4. 检查与验证剪枝后模型
  3. 模型量化 (Quantization)
    1. 原理与应用场景
    2. 在脚本中添加量化步骤
    3. 运行量化脚本
    4. 验证量化后模型
  4. 常见问题与建议
  5. 总结

1. 整体流程概览

在之前博客中已经可以训练一个基础 MNIST 模型(train_mnist.py)并成功获得 mnist_model.h5 的前提下,通常会按照以下顺序进行优化:

在模型训练好后,可以在mnist_project文件夹下找到mnist_model.h5,如下:

  1. 剪枝 (Pruning):减小模型大小、去除不重要的权重,生成 pruned_mnist_model.h5
  2. (可选)量化 (Quantization)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魂兮-龙游

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值