【ZOJ 1500】 Pre-Post-erous!

2 篇文章 0 订阅
2 篇文章 0 订阅

Description

在二叉树的遍历中,我们无法根据已知的前序遍历与后序遍历的结果,来确定一棵树,在如下的三棵树中

它们的前序与后序遍历都是一样的。
在多叉树中也是如此,现在给定“叉”的数目,及前序和后序遍历的结果。
问有多少棵树可以构造出来。

Input

本题有多组数据。

每个数据,第一个数字N代表树的“叉”数,接着给出这棵树的前序遍历和后序遍历

Output

如题

Sample Input

2 abc cba
2 abc bca
10 abc bca
13 abejkcfghid jkebfghicda
0

Sample Output

4
1
45
207352860

HINT

Source

East Central North America 2002


  1. 在不作其他规定的情况下,对于一般的m叉树,dfs的方式仅有先根遍历后根遍历。先根遍历和后根遍历都是递归定义的过程。
  2. 先根遍历:访问根结点;然后按顺序先根遍历第0、1、2...m-1棵子树。后根遍历:按顺序后根遍历第0、1、2...m-1棵子树;然后访问根结点。
若给定m叉树的先根遍历和后根遍历序列,我们可以重建树的大致形状。举个例子,样例输入中的"13 abejkcfghid jkebfghicda":

最后得:


因此共计C(13, 3)*C(13, 1)*C(13, 4)*C(13, 2)=207352860种可能性。

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
using namespace std;

#include <vector>

#define MAXLEN 30
char pre[MAXLEN];
char post[MAXLEN];

vector<int> branch_vec;

//计算n!
int factorial(int n)
{
	int result=1;

	if (n==0) return 1;
	else
	{
		for (int i=1; i<=n; ++i) result *= i;
		return result;
	}
}

//计算C(n, m)
int calc_C(int n, int m)
{
	unsigned int tmp=1;
	for (int i=0; i<m; ++i, --n) tmp*=n;

	return (tmp/(factorial(m)));
}

//计算每一个根结点有多少分支(子树)
void branch_count(int pr1, int pr2, int po1, int po2)	//参数是:preOrder序列的起止下标、postOrder序列的起止下标
{
	int a,b,len, branch=0;

	if(pr1==pr2 && po1==po2) return;	//递归出口:这个根结点没有任何子树。
	else
	{
		a=pr1+1;
		b=po1;
		len=0;

		while (b<po2)
		{
			while ( (pre[a] != post[b+len]) && (b+len<po2) ) ++len;
		
			++branch;	//每找到一个子树,++branch
			branch_count(a, a+len, b, b+len);	//对这个子树递归执行branch_count
		
			a=a+len+1;
			b=b+len+1;
			len=0;
		}

		branch_vec.push_back(branch);	//这个根结点的branch数目存入vector容器
	}
}

int main()
{
	freopen("D:\\in.txt", "r", stdin);  
	freopen("D:\\out.txt", "w", stdout); 

	int m, init_len, ans;

	while (1)
	{
		scanf("%d", &m);
		if(m==0) break;
		else
		{
			scanf("%s%s", pre, post);

			init_len=strlen(pre);

			branch_count(0, init_len-1, 0, init_len-1);

			ans=1;
			for (int i=0; i<branch_vec.size(); ++i)
			{
				ans*=(calc_C(m, branch_vec[i]));
			}

			printf("%d\n", ans);

			branch_vec.clear();
		}
	}

	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值