[大模型]TransNormerLLM-7B Lora 微调

TransNormerLLM-7B Lora 微调

本节我们简要介绍如何基于 transformers、peft 等框架,对 TransNormerLLM-1B「备注:TransNormerLLM-358M/1B/7B的」 模型进行 Lora 微调。Lora 是一种高效微调方法,深入了解其原理可参见博客:知乎|深入浅出Lora

这个教程会在同目录下给大家提供一个 nodebook 文件,来让大家更好的学习。

环境配置

在完成基本环境配置和本地模型部署的情况下,你还需要安装一些第三方库,这里我们有两种安装方式,不过在安装依赖库之前我们首先更新pip版本(防止版本过低),并切换pip的安装源(到国内源,这样可以安装更快,防止下载链接超时)

在红框部分逐行输入如下「2.2」中命令:

# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

方式一:
依然在红框部分逐行输入如下「2.2」中命令:

pip install modelscope==1.11.0
pip install "transformers>=4.37.0"
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1
pip install transformers_stream_generator==0.0.4
pip install datasets==2.18.0
pip install peft==0.10.0
pip install deepspeed
pip install triton==2.0.0
pip install einops

MAX_JOBS=8 pip install flash-attn --no-build-isolation

or

pip install modelscope==1.11.0 "transformers>=4.37.0" streamlit==1.24.0 sentencepiece==0.1.99 accelerate==0.24.1 transformers_stream_generator==0.0.4 datasets==2.18.0 peft==0.10.0 deepspeed triton==2.0.0 einops

MAX_JOBS=8 pip install flash-attn --no-build-isolation

方式二:
将如下内容:

modelscope==1.11.0
"transformers>=4.37.0"
streamlit==1.24.0
sentencepiece==0.1.99
accelerate==0.24.1
transformers_stream_generator==0.0.4
datasets==2.18.0
peft==0.10.0
deepspeed
triton==2.0.0
einops

用 vim 写入一个 requirements.txt 文件,然后运行命令:pip install -r requirements.txt

然后,再执行如下命令

MAX_JOBS=8 pip install flash-attn --no-build-isolation

注意:flash-attn 安装会比较慢,大概需要十几分钟。

在本节教程里,我们将微调数据集 huanhuan.json 放置在根目录 /dataset,该样本数据取自 huanhuan.json

指令集构建

LLM 的微调一般指指令微调过程。所谓指令微调,是说我们使用的微调数据形如:

{
    "instruction":"回答以下用户问题,仅输出答案。",
    "input":"1+1等于几?",
    "output":"2"
}

其中,instruction 是用户指令,告知模型其需要完成的任务;input 是用户输入,是完成用户指令所必须的输入内容;output 是模型应该给出的输出。

即我们的核心训练目标是让模型具有理解并遵循用户指令的能力。因此,在指令集构建时,我们应针对我们的目标任务,针对性构建任务指令集。例如,在本节我们使用由项目合作者合作开源的 Chat-甄嬛 项目作为示例,我们的目标是构建一个能够模拟甄嬛对话风格的个性化 LLM,因此我们构造的指令形如:

{
    "instruction": "你是谁?",
    "input":"",
    "output":"家父是大理寺少卿甄远道。"
}

当然,利用训练数据:alpaca_data.json 也可以的。该样本数据取自 alpaca_data.json,数据由 52,002 个条目组成,已重新格式化。其主要目的是演示如何对我们的模型进行 SFT,并不保证其有效性。
我们所构造的全部指令数据集在根目录下。

数据格式化

Lora 训练的数据是需要经过格式化、编码之后再输入给模型进行训练的,如果是熟悉 Pytorch 模型训练流程的同学会知道,我们一般需要将输入文本编码为 input_ids,将输出文本编码为 labels,编码之后的结果都是多维的向量。我们首先定义一个预处理函数,这个函数用于对每一个样本,编码其输入、输出文本并返回一个编码后的字典:

def process_func(example):
    MAX_LENGTH = 384    # Llama分词器会将一个中文字切分为多个token,因此需要放开一些最大长度,保证数据的完整性
    input_ids, attention_mask, labels = [], [], []
    instruction = tokenizer(f"<|im_start|>system\n现在你要扮演皇帝身边的女人--甄嬛<|im_end|>\n<|im_start|>user\n{example['instruction'] + example['input']}<|im_end|>\n<|im_start|>assistant\n", add_special_tokens=False)  # add_special_tokens 不在开头加 special_tokens
    response = tokenizer(f"{example['output']}", add_special_tokens=False)
    input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]
    attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1]  # 因为eos token咱们也是要关注的所以 补充为1
    labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]  
    if len(input_ids) > MAX_LENGTH:  # 做一个截断
        input_ids = input_ids[:MAX_LENGTH]
        attention_mask = attention_mask[:MAX_LENGTH]
        labels = labels[:MAX_LENGTH]
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "labels": labels
    }

TransNormerLLM-7B 采用的Prompt Template格式如下:

<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
你是谁?<|im_end|>
<|im_start|>assistant
我是一个有用的助手。<|im_end|>

加载tokenizer和半精度模型

模型以半精度形式加载,如果你的显卡比较新的话,可以用torch.bfolat形式加载。对于自定义的模型一定要指定trust_remote_code参数为True

tokenizer = AutoTokenizer.from_pretrained('/root/autodl-tmp/OpenNLPLab/TransNormerLLM-7B/', use_fast=False, trust_remote_code=True, trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained('/root/autodl-tmp/OpenNLPLab/TransNormerLLM-7B/', trust_remote_code=True, device_map="auto",torch_dtype=torch.bfloat16)

定义LoraConfig

LoraConfig这个类中可以设置很多参数,但主要的参数没多少,简单讲一讲,感兴趣的同学可以直接看源码。

  • task_type:模型类型
  • target_modules:需要训练的模型层的名字,主要就是attention部分的层,不同的模型对应的层的名字不同,可以传入数组,也可以字符串,也可以正则表达式。
  • rlora的秩,具体可以看Lora原理
  • lora_alphaLora alaph,具体作用参见 Lora 原理

Lora的缩放是啥嘞?当然不是r(秩),这个缩放就是lora_alpha/r, 在这个LoraConfig中缩放就是4倍。

config = LoraConfig(
    task_type=TaskType.CAUSAL_LM, 
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
    inference_mode=False, # 训练模式
    r=8, # Lora 秩
    lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理
    lora_dropout=0.1# Dropout 比例
)

自定义 TrainingArguments 参数

TrainingArguments这个类的源码也介绍了每个参数的具体作用,当然大家可以来自行探索,这里就简单说几个常用的。

  • output_dir:模型的输出路径
  • per_device_train_batch_size:顾名思义 batch_size
  • gradient_accumulation_steps: 梯度累加,如果你的显存比较小,那可以把 batch_size 设置小一点,梯度累加增大一些。
  • logging_steps:多少步,输出一次log
  • num_train_epochs:顾名思义 epoch
  • gradient_checkpointing:梯度检查,这个一旦开启,模型就必须执行model.enable_input_require_grads(),这个原理大家可以自行探索,这里就不细说了。
args = TrainingArguments(
    output_dir="./output/TransNormerLLM-7B-Lora",
    per_device_train_batch_size=4,
    gradient_accumulation_steps=4,
    logging_steps=10,
    num_train_epochs=3,
    save_steps=100,
    learning_rate=1e-4,
    save_on_each_node=True,
    gradient_checkpointing=True
)

使用 Trainer 训练

trainer = Trainer(
    model=model,
    args=args,
    train_dataset=tokenized_id,
    data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
)
trainer.train()

加载 lora 权重推理

训练好了之后可以使用如下方式加载lora权重进行推理:

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from peft import PeftModel

mode_path = '/root/autodl-tmp/OpenNLPLab/TransNormerLLM-7B/'
lora_path = './output/DeepSeek'

# 加载tokenizer
tokenizer = AutoTokenizer.from_pretrained(mode_path)

# 加载模型
model = AutoModelForCausalLM.from_pretrained(mode_path, device_map="auto",torch_dtype=torch.bfloat16)

# 加载lora权重
model = PeftModel.from_pretrained(model, model_id=lora_path, config=config)

prompt = "你是谁?"
messages = [
    {"role": "system", "content": "现在你要扮演皇帝身边的女人--甄嬛"},
    {"role": "user", "content": prompt}
]

text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

model_inputs = tokenizer([text], return_tensors="pt").to('cuda')

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

print(response)
您好!对于ChatGPT-LM模型微调,我可以为您提供一些基本的指导。以下是一个示例代码,用于微调ChatGPT-LM模型(如chatglm2-6b)来执行Lora任务: ```python import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2Config, Trainer, TrainingArguments from torch.utils.data import Dataset, DataLoader # 加载预训练的模型和tokenizer model_name = "microsoft/DialoGPT-large" model = GPT2LMHeadModel.from_pretrained(model_name) tokenizer = GPT2Tokenizer.from_pretrained(model_name) # 构建自定义的Lora数据集 class LoraDataset(Dataset): def __init__(self, conversations): self.conversations = conversations def __len__(self): return len(self.conversations) def __getitem__(self, idx): return self.conversations[idx] # 定义微调所需的函数 def prepare_inputs(examples): # 利用tokenizer对输入进行编码 inputs = tokenizer(examples["input_text"], padding="max_length", truncation=True, max_length=512) inputs["labels"] = inputs.input_ids.clone() return inputs def compute_metrics(pred): # 计算模型在验证集上的指标,这里示例中仅计算损失(负对数似然) loss = pred.loss metrics = {"loss": loss} return metrics # 加载并处理Lora数据集 conversations = [...] # 您的Lora数据集,每个对话是一个字符串列表 dataset = LoraDataset(conversations) train_dataset = dataset[:int(0.9 * len(dataset))] val_dataset = dataset[int(0.9 * len(dataset)):] # 定义微调参数 training_args = TrainingArguments( output_dir="./lora_model", num_train_epochs=3, per_device_train_batch_size=2, per_device_eval_batch_size=2, logging_steps=1000, save_steps=5000, evaluation_strategy="steps", eval_steps=2000, save_total_limit=1, ) # 创建Trainer并进行微调 trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset, data_collator=prepare_inputs, compute_metrics=compute_metrics, ) trainer.train() ``` 请注意,上述代码仅提供了一个简单的示例。在微调ChatGPT-LM模型时,您需要根据您的数据集和任务对代码进行适当的调整。还可以根据需要调整微调参数。 希望这可以帮到您!如果您有任何其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FL1623863129

你的打赏是我写文章最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值