s3c2440下移植tslib库的编译步骤

编译之前ubuntu必须有这几个工具

sudo apt-get install autoconf
sudo apt-get install automake
sudo apt-get install libtool


编译步骤:
解压:tar -xvf  tslib-1.4.tar.gz
cd tslib
./autogen.sh 

mkdir tmp
echo "ac_cv_func_malloc_0_nonnull=yes" >arm-linux.cache
./configure --host=arm-linux --cache-file=arm-linux.cache --prefix=$(pwd)/tmp//安装到当前目录的tmp 目录


make
make install

安装完后:
进入tmp : cd tmp

查看是否有etc include lib bin 

把tmp 目录拷贝到根文件系统下如:cp tmp/  first_fs/ts_dir -rfd

启动开发板

cd /mnt/ts_dir/tmp

把tmp目录下的所有文件拷到开发板的根目录下

cp * / -rdf

 

使用:

先安装s3c_ts.ko, lcd.ko

1.
修改 /etc/ts.conf第1行(去掉#号和第一个空格):
# module_raw input
改为:module_raw input  //记得把空格也去掉

2.命令行上输入
export TSLIB_TSDEVICE=/dev/event0 //这个根据自己的安装的触摸屏驱动,然后查看/dev/event*
export TSLIB_lCALIBFILE=/etc/pointerca
export TSLIB_CONFFILE=/etc/ts.conf
export TSLIB_PLUGINDIR=/lib/ts
export TSLIB_CONSOLEDEVICE=none
export TSLIB_FBDEVICE=/dev/fb0

测试校准文件

ts_calibrate

ts_test

<think>嗯,用户想了解LangGraph的使用,需要一个简单的例子。我需要先回忆一下LangGraph的基本概念和用途。LangGraph是LangChain的一个扩展,用于构建有状态的多角色应用,特别是处理循环结构的任务,比如聊天机器人或者工作流自动化。用户可能需要一个入门级的示例,帮助他们快速上手。 首先,我应该确保例子的步骤清晰,并且代码正确。可能需要从安装开始,然后构建一个简单的有状态代理。常见的例子是聊天机器人,每次交互都维护对话历史,这可以很好地展示LangGraph的状态管理。 接下来,考虑代码结构。需要导入必要的模块,比如StateGraph,定义状态结构,添加节点和边,设置入口点,最后编译并运行。同时,要解释每个步骤的作用,让用户理解背后的逻辑。 还要注意用户可能的疑问点,比如状态的定义、节点的处理逻辑、如何添加边和设置循环。需要逐一解释这些部分,避免术语过多,保持语言简洁。 另外,用户提到使用中文回答,所以所有解释都要用中文,并且确保LaTeX格式正确,虽然在这个例子中可能用不上数学表达式,但如果有涉及的地方,需要按照规则处理。 最后,检查代码是否有语法错误,是否能够运行,以及解释是否覆盖了关键点。确保用户能够按照步骤复现例子,并理解LangGraph的基本使用方式。</think>以下是用简单案例分步说明LangGraph的使用(基于LangChain框架): --- **1. 安装依赖** ```bash pip install langgraph langchain-openai ``` **2. 构建基础状态机** ```python from langgraph.graph import StateGraph # 定义状态类型(字典结构) class AgentState(dict): @property def messages(self): return self.get("messages", []) # 创建初始状态图 workflow = StateGraph(AgentState) ``` **3. 添加节点** ```python # 定义消息处理函数 def user_reply(state): return {"messages": [{"role": "user", "content": "你好!"}]} # 创建节点 workflow.add_node("user_node", user_reply) ``` **4. 连接边** ```python # 设置入口点 workflow.set_entry_point("user_node") # 添加自循环(模拟持续对话) workflow.add_edge("user_node", "user_node") ``` **5. 编译执行** ```python # 编译流程图 app = workflow.compile() # 运行初始状态 initial_state = AgentState(messages=[]) result = app.invoke(initial_state) # 输出结果 print(result["messages"]) # [{&#39;role&#39;: &#39;user&#39;, &#39;content&#39;: &#39;你好!&#39;}] ``` --- **关键概念解释:** 1. **状态(State)** 通过`AgentState`类定义应用状态容器,这里用`messages`字段存储对话历史 2. **节点(Node)** 每个节点对应一个处理函数,通过`add_node`方法注册到工作流中 3. **边(Edge)** 使用`add_edge`建立节点间的连接关系,`add_conditional_edges`可实现条件分支 4. **循环机制** 通过将节点连接到自身实现持续对话循环(本示例中用户节点不断重复响应) --- **扩展案例:添加AI响应** ```python from langchain_openai import ChatOpenAI # 添加AI节点 model = ChatOpenAI() def ai_response(state): last_msg = state.messages[-1]["content"] response = model.invoke(f"用户说:{last_msg},请回复") return {"messages": [{"role": "assistant", "content": response.content}]} workflow.add_node("ai_node", ai_response) # 修改边连接 workflow.add_edge("user_node", "ai_node") workflow.add_edge("ai_node", "user_node") # 现在流程变为:用户 -> AI -> 用户 -> AI... 循环对话 ``` 这个示例展示了LangGraph构建对话流程的核心能力。实际开发中可结合: - 条件分支(处理不同意图) - 并行执行(同时调用多个工具) - 状态验证(确保数据完整性)等功能模块
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值