网约车出行时间预测

该博客介绍了一个利用XGBoost预测纽约出租车行程时间的项目。通过数据读取、预处理、特征工程(包括时间、距离和速度特征提取)、异常数据过滤,以及使用XGBoost模型进行训练和预测,最终实现对行程时间的预测。同时,文章展示了数据的地理分布、时间周期内的出行速度变化等可视化结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

出行时间预测

● ○ ●

Xgboost Predict Taxi time

● ○ ●

项目地址:https://github.com/AnneQi/kaggle_project

项目说明:

  1. 纽约出租车协会提供了数百万出租车行车记录.

  2. 根据载客情况,预测毎一单出车用时

数据集说明:

❉❉❉❉❉❉❉❉❉❉

分析过程

  1. 数据读取

    1. 读取训练集和测试集

    2. 读取行程数据

  1. 数据可视化 KMeans Clustering + Matplotlib

  1. 特征工程

    1. 时间特征

    2. 距离特征

    3. 区域拥挤特征

    4. 挖掘速度特征

    5. One-Hot/get dummies

  1. 运行模型 XGBoost: 

    1. One-Hot-Enconde类别型数据

    2. 区分训练集,验证集和测试集

    3. 设置参数,评估得分

    4. 写出结果,上传提交

数据预处理

1、导入需要的包

2、读入数据

3、查看数据情况

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值