出行时间预测
● ○ ●
Xgboost Predict Taxi time
● ○ ●
项目地址:https://github.com/AnneQi/kaggle_project
项目说明:
纽约出租车协会提供了数百万出租车行车记录.
根据载客情况,预测毎一单出车用时
数据集说明:

❉❉❉❉❉❉❉❉❉❉
分析过程
数据读取
-
读取训练集和测试集
读取行程数据
数据可视化 KMeans Clustering + Matplotlib
特征工程
-
时间特征
距离特征
区域拥挤特征
挖掘速度特征
One-Hot/get dummies
运行模型 XGBoost:
-
One-Hot-Enconde类别型数据
区分训练集,验证集和测试集
设置参数,评估得分
写出结果,上传提交

数据预处理
1、导入需要的包

2、读入数据

3、查看数据情况


该博客介绍了一个利用XGBoost预测纽约出租车行程时间的项目。通过数据读取、预处理、特征工程(包括时间、距离和速度特征提取)、异常数据过滤,以及使用XGBoost模型进行训练和预测,最终实现对行程时间的预测。同时,文章展示了数据的地理分布、时间周期内的出行速度变化等可视化结果。
最低0.47元/天 解锁文章
1355

被折叠的 条评论
为什么被折叠?



