
向量的含义
1. 从物理学的角度,向量是 空间中的箭头 ,决定一个向量的是它的长度(Length)和它所指的方向(Direction),只要这两个特征相同,可以自由移动一个变量而使它保持不变。
平面中的向量是二维的,空间中的向量是三维的。

从计算机科学的角度,向量是有序的数字列表。
比如分析房价,假设只关注两个特征:房屋面积和总价,用一对数字对每个房子建模。第一个数字代表房屋面积,第二个数字代表总价,,即用二维向量对房屋建模。这里的向量也可以说是列表。要注意
。
从数学的角度,两个向量相
加以及数字与向量相乘都是有意义的。
向量形式
二维向量
三维向量

向量运算
向量加法

向量加法的定义,是线性代数中唯一允许向量离开原点的情形。将其视作数轴加法的一种扩展。

向量数乘

向量数乘在几何角度上看就是缩放(Scaling),用于缩放向量的数被称为标量(Scalars)。实际上,数字在线性代数中起到的作用就是缩放,因此数字和标量两个词可以相互替换。

向量的意义
一方面,线性代数为数据分析提供了将大量数据列表概念化、可视化的渠道。让数据样式变得清晰,并让人了解特定运算的意义。
另一方面,线性代数给物理学家和计算机图形程序员提供了一种语言,使他们通过计算机能处理的数字来描述并操纵空间。
线性组合、张成的空间与基


把向量看作标量时, 基向量 实际上就是这些标量缩放的对象。
可以根据不同 基向量 构建坐标系,来获得一个合理的坐标系。比如随意选一个指向右上方的向量,再随意选一个指向右下方的向量,此时选择两个标量,分别缩放两个基向量中的一个,然后再把它们相加,就能得到不同的结果。
通过改变所选择的标量,可以得到哪些二维向量?事实上,这样做可以得到所有的二维向量。
这样一对基向量,同样允许一对数和二维向量自有转化,但是这种变换各系与之前用 和
的变换关系完全不同:

每当用数字描述向量时,

本文深入探讨向量的物理、计算机科学和数学意义,讲解向量的二维和三维表示,以及向量加法、数乘运算。讨论了向量在数据分析、物理和计算机图形学中的应用,解释了线性组合、张成的空间和线性变换。通过矩阵描述线性变换,并介绍了矩阵向量乘法的应用。
最低0.47元/天 解锁文章
877

被折叠的 条评论
为什么被折叠?



