动态图理解向量的含义

本文深入探讨向量的物理、计算机科学和数学意义,讲解向量的二维和三维表示,以及向量加法、数乘运算。讨论了向量在数据分析、物理和计算机图形学中的应用,解释了线性组合、张成的空间和线性变换。通过矩阵描述线性变换,并介绍了矩阵向量乘法的应用。
摘要由CSDN通过智能技术生成

向量的含义

1. 从物理学的角度,向量是 空间中的箭头 ,决定一个向量的是它的长度(Length)和它所指的方向(Direction),只要这两个特征相同,可以自由移动一个变量而使它保持不变。
平面中的向量是二维的,空间中的向量是三维的。

  1. 从计算机科学的角度,向量是有序的数字列表。
    比如分析房价,假设只关注两个特征:房屋面积和总价,用一对数字对每个房子建模。第一个数字代表房屋面积,第二个数字代表总价,,即用二维向量对房屋建模。这里的向量也可以说是列表。要注意

  2. 从数学的角度,两个向量相  以及数字与向量相  都是有意义的。

向量形式

二维向量

三维向量

向量运算

向量加法

向量加法的定义,是线性代数中唯一允许向量离开原点的情形。将其视作数轴加法的一种扩展。

向量数乘

向量数乘在几何角度上看就是缩放(Scaling),用于缩放向量的数被称为标量(Scalars)。实际上,数字在线性代数中起到的作用就是缩放,因此数字和标量两个词可以相互替换。

向量的意义

一方面,线性代数为数据分析提供了将大量数据列表概念化、可视化的渠道。让数据样式变得清晰,并让人了解特定运算的意义。

另一方面,线性代数给物理学家和计算机图形程序员提供了一种语言,使他们通过计算机能处理的数字来描述并操纵空间。

线性组合、张成的空间与基


把向量看作标量时, 基向量 实际上就是这些标量缩放的对象。

可以根据不同 基向量 构建坐标系,来获得一个合理的坐标系。比如随意选一个指向右上方的向量,再随意选一个指向右下方的向量,此时选择两个标量,分别缩放两个基向量中的一个,然后再把它们相加,就能得到不同的结果。

通过改变所选择的标量,可以得到哪些二维向量?事实上,这样做可以得到所有的二维向量。

这样一对基向量,同样允许一对数和二维向量自有转化,但是这种变换各系与之前用 的变换关系完全不同:

每当用数字描述向量时,

### 特征值和特征向量的概念及其意义理解特征值和特征向量之前,先回顾一些基本概念。对于给定的一个方阵 \(A\) ,如果存在一个非零向量 \(v\) 及标量 \(\lambda\) 使得下述关系成立: \[ Av = \lambda v \] 那么称 \(\lambda\) 是矩阵 \(A\) 的一个 **特征值**,而对应的非零向量 \(v\) 称作属于该特征值的 **特征向量**[^2]。 #### 特征值的意义 特征值揭示了线性变换的本质特性之一——伸缩比例。具体来说,在几何空间中应用由矩阵表示的线性变换时,某些特殊方向上的矢量仅发生长度变化而不改变其指向;这些特殊的拉伸因子即为特征值。当考虑的是正交矩阵 \(Q\) 并且有 \(Y=QX\) (这里 \(X, Y\) 均为列向量),则可以得知模长不变 |Y|=|X| 这个性质表明旋转不会影响向量大小只会影响朝向[^1]。 #### 特征向量的作用 特征向量定义了一个特定的方向,在这个方向上施加线性映射只会引起尺度的变化而不是角度偏转。因此它们提供了关于如何分解复杂操作成更简单部分的信息。通过找到一组基底作为特征向量集,可以使原本复杂的多维数据处理变得相对容易理解和计算。 ```python import numpy as np # 定义一个简单的二维矩阵 A A = np.array([[4, 0], [0, 9]]) # 计算特征值和特征向量 eigenvalues, eigenvectors = np.linalg.eig(A) print("Eigenvalues:", eigenvalues) print("Eigenvectors:\n", eigenvectors) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值