4k star, 25w+下载的推荐&广告开源项目期待你的加入!

    昨天在番外篇——社招如何拿到心仪公司的offer一文中,作者写到除了项目需要重点准备之外,如果个人有「好的开源项目或者技术博客」 的话一定要贴在简历上哦,这个可是非常大的加分项。在今年的校招过程中,之前一些参与过我们的项目贡献的小伙伴也有向我反馈说参与deepctr开发的这段经历为他们的简历和面试都带来了一定的亮点和优势。

核心开发同学们今年校招基本都拿到BAT头条美团这些公司的offer

参与优质开源项目的收获

  • 参与的过程需要自己不断学习,亲自做一遍要比看懂理解的更深刻。

  • 可以与更多的小伙伴或者前辈们交流,扩充自己的知识广度,了解到对同样的问题其他同学的视角是怎么样的

  • 项目自身的认可,如果你的面试官也曾经学习或者使用过这个项目,那么作为求职者应该是会加分不少的~(有同学提到过自己的面试官曾经就了解过他所参与的项目)


所以今天写这篇文章是希望借助公众号的粉丝 群体招募一些对我们的开源项目感兴趣的同学,一起参与进来完善和介绍。
下面会先介绍一下目前已有的项目和计划做的事情,最后会给出一个群,有意向的同学欢迎加入(记得先「看下加入要求」)。

项目介绍

  • DeepCTR

DeepCTR目前是一个具有4kstar,1.3kfork,以及25w+ pypi渠道下载量的基于深度学习的点击率预测算法库。目前有大量的学生群体和一些业界算法同学在学习和使用,除此之外也有被一些学术文章所引用。正在快速地进行迭代中。

项目也在被一些学术文章所引用
  • GraphEmbedding&GNN


众所周知,图网络最近一直是一个火热的研究方向,在业届针对user-user,user-item,以及item-item之间的建模中图网络也在发挥着它特有的优势。此项目目前主要是囊括了经典的图嵌入和图卷积算法,提供了统一的train和get embedding的接口,做到了graph in, embedding out,方便同学们进行学习和对比实验。

  • DeepMatch

DeepMatch提供了若干主流的深度召回匹配算法的实现,并支持快速导出用户和物品向量进行ANN检索。非常适合同学们进行快速的实验和学习~

  • DeepCTR-Torch

pytorch版本的deepctr,提供给不熟悉tensorflow的同学进行研究和学习。

参与贡献

提交可被合并的代码是最直接的参与方式,我们要求开发者进行逻辑测试和效果测试,通过测试后会进行合并和统一的发布。

协助解决issues

  • 如何找到issues

  • 如何帮助解决

对于普通的questions,如果你有想法直接在底下回复即可。通常如果提问者遇到代码报错的问题难以定位时,可以让对方提供一份最短问题可复现代码(简单来说就你download下来,run一下就可以报他遇到的错),这有助于我们快速定位和排查问题。

对于需求类的,如果大家有思路,可以先跟我联系,在群里直接说或者发邮件给我都可以。我们先沟通一下思路以及你的想法是否牵扯到其他部分的改动,尽量作为相对独立的模块进行修改和开发。

帮助宣传

使用以上项目进行学习,比赛或者探索性实验甚至在自己的实际工作中使用。可以写一些教程和文档,帮助更多新同学了解和上手使用,这里一定要记得标注当时使用的版本,因为我们正处在一个快速迭代的过程中,每个版本的接口和功能可能都会发生变化。

加入要求

  • 基本要求

  1. 感兴趣

  2. 熟悉相关领域算法

  3. 熟悉tensorflow or pytorch(根据你的感兴趣的项目,python就不用多说了)

  4. 有足够的空余时间投入开发(欢迎在校生参与,既能学习知识又能丰富自己的简历~)

  5. 熟悉git相关的操作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值