apex安装出错:TypeError unsupported operand type(s) for +: “NoneType“ and “str“ 安装apex报错:TypeError unsupported operand type(s) for +: “NoneType“ and “str“
python实现基类的抽象方法 import abcimport numpy as np# 定义好实现基类的函数def f1(self): print('hello:{} + {}'.format(self.x, self.y))# 基类class Task(metaclass = abc.ABCMeta): def __init__(self, x, y): self.x = x self.y = y @abc.abstractmethod def run.
linux grep命令详解 转自:https://www.cnblogs.com/wangcp-2014/p/5146335.htmllinux grep命令详解1.作用Linux系统中grep命令是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来。grep全称是Global Regular Expression Print,表示全局正则表达式版本,它的使用权限是所有用户。2.格式grep [options]3.主要参数[options]主要参数:-a或--text不要忽略二...
tensor笔记7--tensor的各种重载 a = torch.Tensor([[1, 2, 3, 7, 8, 5, 4, 9], [1, 3, 4, 6, 1, 3, 3, 9]])print(a[0])b = torch.Tensor([1, 1])c = torch.Tensor([1, 2])for i in c: index = i == b print(index) print(a[index])输入:tensor([1., 2., 3., 7....
tensor笔记6 -- randint 输入a = torch.randint(0, 6, (4, ))print(a)输出:tensor([0, 2, 4, 4])输入:b = torch.randint(0, 5, (3))print(b)输出:TypeError: randint() received an invalid combination of arguments - got (int, int, int), but expected one of: * (int high, ...
python类的方法中定义函数 代码:class A(): def run(self): def p(): print('hello') p() a = A()a.run()输出:hello注意类中方法和普通函数的区别,python类的方法必须要带self参数,否则会报错xxx() takes 0 positional arguments but 1 was given,原因:Python在类中定义.
深度学习的hello world--mnist手写数字识别代码实现 第一步:下载数据源并进行预处理import torchimport torchvisionimport torchvision.transforms as transforms# # 定义预处理函数,这些预处理一次放在compose函数中transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])# 导入mnist数据源trainset = torchvision.
tensor笔记5--view() 代码:a = torch.tensor([[1, 2, 3], [4, 5, 6]])b = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 0], [11, 12]]])p.
tensor笔记4--max() 代码:a = torch.tensor([[4, 2, 3], [1, 6, 5]])print(a.size())print('==========')print(a.max(0))print('==========')print(a.max(1))输出:torch.Size([2, 3])==========torch.return_types.max(values=tensor([4, 6, 5]),indices=tensor(.
tensor笔记3---size() 代码:a = torch.tensor([[1, 2, 3], [4, 5, 6]])print(a.size())print(a.size(0))print(a.size(1))输出:torch.Size([2, 3])23
tensor笔记2(tensor1==tensor2) 代码:a = torch.tensor([1, 2, 3, 4, 5])b = torch.tensor([1, 2, 2, 4, 6])c = (a == b)print(c)输出:tensor([ True, True, False, True, False])
tensor笔记1--index_select函数(对tensor维度的理解) pytorch中index_select函数的作用选取某一维度上的数据函数形式为:index_select(input, dim, index)input为tensor,dim是维度从0开始,index是一维tensor(向量),表示在这个维度上要选择的下标下边直接上例子:import torchx = torch.Tensor([[[1, 2, 3], [4, 5, 6]], [[9, 8, 7],
残差网络(ResNet)学习笔记zZ 产生背景: 我们都知道增加网络的宽度和深度可以很好的提高网络的性能,深的网络一般都比浅的的网络效果好,比如说一个深的网络A和一个浅的网络B,那A的性能至少都能跟B一样,为什么呢?因为就算我们把B的网络参数全部迁移到A的前面几层,而A后面的层只是做一个等价的映射,就达到了B网络的一样的效果。一个比较好的例子就是VGG,该网络就是在AlexNex的基础上通过增加网络深度大幅度提高了网络性能。 对于原来的网络,如果简单地增加深度,会导致梯度弥散或梯度爆炸。对于该问题的解决方法...
梯度下降算法(高中生都能看懂的例子演示) 梯度下降算法在机器学习与神经网络中有广泛的应用,主要用来求最优参数,下面我们通过一个最简单的例子来演示梯度下降算法过程示例:举例:y = x ^ 2 ,通过梯度下降算法求y取最小值(极小值)时候的最优解x求解过程主要通过迭代完成迭代的方程为:x = x - y'(x) * α其中x为要求的解,y'(x)为梯度(也就是导数或偏导,我们在这里用最简单的一元函数演示,所以直接写成导数)α为学习率(或称步长,是一个重要的参数,α的选择直接影响这着算法的效率)算法过程:1.首先任
环境变量详解以及演示 环境变量:环境变量中保存的是一个一个的路径。当我们在命令行DOS中输入一个命令(或访问一个文件时),系统会首先在当前目录下寻找如果找到了则直接执行或打开。如果没有找到,则会依次去path环境变量的路径中去寻找,直到找到为止。如果path环境变量中的路径都没有找到,则报错:'xxx'不是内部或外部命令,也不是可运行的程序或批处理文件。经常访问的文件或程序可以添加到path中,这样就可以在系统任意位置访问注意事项:1.如果环境变量中美欧path,可以手动添加2.path环境变量不
0-1背包问题zZ 问题描述:有n件物品,每件物品的重量为w[i],其价值为v[i],现在有个容量为m的背包,如何选择物品使得转入背包物品的价值最大。思路:首先想到的肯定是枚举所有物品的排列组合,再从中找到价值最大的那个组合,时间复杂度O(n!)。同样可以通过选择是否需要某个物品来枚举出所有的排列组合,时间复杂度O(2^n)。这样的时间复杂度是完全不能接受的采用动态规划的方法,时间复杂度只有O(nm),具体方法如下:首先设置一个二维数组dp[][],令dp[i][j]表示前i个物品装进容量为j的背包能获得的
Linux与Windows的区别zZ 相同点用户和组Linux是多用户多任务操作系统而Windows是单用户多任务操作系统。都可以由许多不同的用户来使用,为每个用户提供单独的环境和资源。基于用户身份来控制安全性。都可以以组成员的方式来控制资源的访问权限,这样在用户数目较大时可以不必为每一个帐号设置权限。用户和组可以集中管理,让多个服务器共享相同的用户和身份验证数据。文件系统Linux和Windows都支持多种文件系...
匿名内部类 什么是匿名内部类What先说类,我们都知道类用于描述客观世界里某一类对象的共同特征,对象是其具体体现。类可以被被认为是一种自定义的数据类型,可以使用类来定义变量。也就是所说的类类型,是一种引用数据类型。如果在一个类里面定义一个类,那么这个类就是内部类,外面的那个类就是外部类,这个很好理解。内部类就相当于外部类的一个成员,你可以把内部类看成一个整体。内部类分为:静态内部类,非静态内部类。匿名...
程序内存分配--堆和栈 转自https://www.cnblogs.com/langtianya/p/4441206.html(1)内存分配的策略 按照编译原理的观点,程序运行时的内存分配有三种策略,分别是静态的,栈式的,和堆式的. 静态存储分配是指在编译时就能确定每个数据目标在运行时刻的存储空间需求,因而在编 译时就可以给他们分配固定的内存空间.这种分配策略要求程序代码中不允许有可变数据结构(比如可变数组...