最小二乘

按照《统计学习原理》一书中提到的机器学习三要素:模型、策略、算法。我认为最小二乘属于策略的范畴,这个策略就是求误差的最小平方和,对应两种情况:线性和非线性。线性情况下的解是closed-form solution(这种情况下可以找到全局最优解)。而非线性的情况没有closed-form solution,通常用迭代法求解(如梯度下降法)或将非线性最小二乘问题转化为线性最小二乘问题(一阶泰勒展开)。针对两种情况的不同求解方式其实就是算法。

下面来介绍一下线性情况下最小二乘法的矩阵形式公式推导:

首先给出一个线性模型的矩阵形式:

\[Y = AX\]

根据最小二乘得到:

\[L = {(AX - Y)^2}\]

\[\min L\]

因为极值点对应的导数为零,所以我们对L求偏导:

首先先将L变形

\[L = {(AX - Y)^T}(AX - Y)\]

然后展开

\[L = {X^T}{A^T}AX - {Y^T}AX - {X^T}{{\rm{A}}^T}Y + {Y^T}Y\]

接下来对上式求导,求导的过程中需要使用矩阵微积分的知识。

\[L' = 2{A^T}AX - 2{{\rm{A}}^T}Y = 0\]

所以解X必然满足:

\[{A^T}AX ={{\rm{A}}^T}Y \]

当m×n矩阵具有不同的秩时,上述方程的解有两种不同的情况。

情况1:矩阵A是超定的且是列满秩的rank(A)=n,那么可以得到唯一解:

\[X = {({A^T}A)^{ - 1}}{A^T}Y\]

矩阵A是超定的且是秩亏缺的rank(A)<n,最小二乘解为:

\[X = {({A^T}A)^{ - }}{A^T}Y\]

其中\[({A^T}A)^{ - }\]代表为矩阵的Moore-Penrose逆矩阵。

情况2:矩阵A是欠定的。这种情况不能得到唯一解。


Ps.矩阵微积分


  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值