二叉树的深度优先遍历和广度优先遍历

本文介绍了二叉树的深度优先遍历与广度优先遍历的方法,包括递归与非递归实现,并通过实例展示了先序、中序、后序及广度优先遍历的过程。

1. 分析

二叉树的深度优先遍历的非递归的通用做法是采用栈,广度优先遍历的非递归的通用做法是采用队列。

深度优先遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次。要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历、中序遍历、后序遍历。具体说明如下:

  • 先序遍历:对任一子树,先访问根,然后遍历其左子树,最后遍历其右子树。
  • 中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树。
  • 后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。

广度优先遍历:又叫层次遍历,从上往下对每一层依次访问,在每一层中,从左往右(也可以从右往左)访问结点,访问完一层就进入下一层,直到没有结点可以访问为止。

2. 举例说明

对下图所示的二叉排序树进行遍历,要求使用先序遍历(递归、非递归)、中序遍历(递归、非递归)、后序遍历(递归、非递归)和广度优先遍历。

2.1 参考代码

package BinaryTreeTraverseTest;

import java.util.LinkedList;
import java.util.Queue;

/**
 * 二叉树的深度优先遍历和广度优先遍历
 * @author Fantasy
 * @version 1.0 2016/10/05 - 2016/10/07
 */
public class BinaryTreeTraverseTest {
    public static void main(String[] args) {
		
	BinarySortTree<Integer> tree = new BinarySortTree<Integer>();
        
        tree.insertNode(35);
        tree.insertNode(20);
        tree.insertNode(15);
        tree.insertNode(16);
        tree.insertNode(29);
        tree.insertNode(28);
        tree.insertNode(30);
        tree.insertNode(40);
        tree.insertNode(50);
       	tree.insertNode(45);
       	tree.insertNode(55);
        
       	System.out.print("先序遍历(递归):");
       	tree.preOrderTraverse(tree.getRoot());
       	System.out.println();
       	System.out.print("中序遍历(递归):");
       	tree.inOrderTraverse(tree.getRoot());
      	System.out.println();
       	System.out.print("后序遍历(递归):");
       	tree.postOrderTraverse(tree.getRoot());
       	System.out.println();
        
       	System.out.print("先序遍历(非递归):");
       	tree.preOrderTraverseNoRecursion(tree.getRoot());
       	System.out.println();
       	System.out.print("中序遍历(非递归):");
       	tree.inOrderTraverseNoRecursion(tree.getRoot());
       	System.out.println();
       	System.out.print("后序遍历(非递归):");
       	tree.postOrderTraverseNoRecursion(tree.getRoot());
       	System.out.println();
        
       	System.out.print("广度优先遍历:");
       	tree.breadthFirstTraverse(tree.getRoot());
    }
}

/**
 * 结点
 */
class Node<E extends Comparable<E>> {
	
    E value;
    Node<E> left;
    Node<E> right;
    
    Node(E value) {
        this.value = value;
        left = null;
        right = null;
    }
    
}

/**
 * 使用一个先序序列构建一棵二叉排序树(又称二叉查找树)
 */
class BinarySortTree<E extends Comparable<E>> {
	
    private Node<E> root;
    
    BinarySortTree() {
        root = null;
    }
    
    public void insertNode(E value) {	
        if (root == null) {
            root = new Node<E>(value);
            return;
        }    
        Node<E> currentNode = root;
        while (true) {
            if (value.compareTo(currentNode.value) > 0) {
            	if (currentNode.right == null) {
                    currentNode.right = new Node<E>(value);
                    break;
                }
                currentNode = currentNode.right;
            } else {
                if (currentNode.left == null) {
                    currentNode.left = new Node<E>(value);
                    break;
                }
                currentNode = currentNode.left;
            }
        }
    }
    
    public Node<E> getRoot(){
        return root;
    }

    /**
     * 先序遍历二叉树(递归)
     * @param node
     */
    public void preOrderTraverse(Node<E> node) {
    	System.out.print(node.value + " ");
    	if (node.left != null)
    		preOrderTraverse(node.left);
    	if (node.right != null)
    		preOrderTraverse(node.right);
    }
    
    /**
     * 中序遍历二叉树(递归)
     * @param node
     */
    public void inOrderTraverse(Node<E> node) {
    	if (node.left != null)
    		inOrderTraverse(node.left);
    	System.out.print(node.value + " ");
    	if (node.right != null)
    		inOrderTraverse(node.right);
    }
    
    /**
     * 后序遍历二叉树(递归)
     * @param node
     */
    public void postOrderTraverse(Node<E> node) {
    	if (node.left != null)
    		postOrderTraverse(node.left);
    	if (node.right != null)
    		postOrderTraverse(node.right);
    	System.out.print(node.value + " ");
    }
    
    /**
     * 先序遍历二叉树(非递归)
     * @param root
     */
    public void preOrderTraverseNoRecursion(Node<E> root) {
    	LinkedList<Node<E>> stack = new LinkedList<Node<E>>();
    	Node<E> currentNode = null;
    	stack.push(root);
    	while (!stack.isEmpty()) {
    		currentNode = stack.pop();
    		System.out.print(currentNode.value + " ");
    		if (currentNode.right != null)
    			stack.push(currentNode.right);
    		if (currentNode.left != null)
    			stack.push(currentNode.left);
    	}
    }
    
    /**
     * 中序遍历二叉树(非递归)
     * @param root
     */
    public void inOrderTraverseNoRecursion(Node<E> root) {
    	LinkedList<Node<E>> stack = new LinkedList<Node<E>>();
    	Node<E> currentNode = root;
    	while (currentNode != null || !stack.isEmpty()) {
    		// 一直循环到二叉排序树最左端的叶子结点(currentNode是null)
    		while (currentNode != null) {
    			stack.push(currentNode);
    			currentNode = currentNode.left;
    		}
			currentNode = stack.pop();
			System.out.print(currentNode.value + " ");
			currentNode = currentNode.right;
    	}	
    }
    
    /**
     * 后序遍历二叉树(非递归)
     * @param root
     */
    public void postOrderTraverseNoRecursion(Node<E> root) {
    	LinkedList<Node<E>> stack = new LinkedList<Node<E>>();
    	Node<E> currentNode = root;
    	Node<E> rightNode = null;
    	while (currentNode != null || !stack.isEmpty()) {
    		// 一直循环到二叉排序树最左端的叶子结点(currentNode是null)
    		while (currentNode != null) {
    			stack.push(currentNode);
    			currentNode = currentNode.left;
    		}
    		currentNode = stack.pop();
    		// 当前结点没有右结点或上一个结点(已经输出的结点)是当前结点的右结点,则输出当前结点
    		while (currentNode.right == null || currentNode.right == rightNode) {
    			System.out.print(currentNode.value + " ");
    			rightNode = currentNode;
    			if (stack.isEmpty()) {
    				return; //root以输出,则遍历结束
    			}
    			currentNode = stack.pop();
    		}
    		stack.push(currentNode); //还有右结点没有遍历
    		currentNode = currentNode.right;
    	}
    }
    
    /**
     * 广度优先遍历二叉树,又称层次遍历二叉树
     * @param node
     */
    public void breadthFirstTraverse(Node<E> root) {
    	Queue<Node<E>> queue = new LinkedList<Node<E>>();
    	Node<E> currentNode = null;
    	queue.offer(root);
    	while (!queue.isEmpty()) {
    		currentNode = queue.poll();
    		System.out.print(currentNode.value + " ");
    		if (currentNode.left != null)
    			queue.offer(currentNode.left);
    		if (currentNode.right != null)
    			queue.offer(currentNode.right);
    	}
    }
    
}

2.2 输出结果

先序遍历(递归):35 20 15 16 29 28 30 40 50 45 55 
中序遍历(递归):15 16 20 28 29 30 35 40 45 50 55 
后序遍历(递归):16 15 28 30 29 20 45 55 50 40 35 
先序遍历(非递归):35 20 15 16 29 28 30 40 50 45 55 
中序遍历(非递归):15 16 20 28 29 30 35 40 45 50 55 
后序遍历(非递归):16 15 28 30 29 20 45 55 50 40 35 
广度优先遍历:35 20 40 15 29 50 16 28 30 45 55 

<think>我们已经在之前的对话中讨论了二叉树深度优先遍历(DFS)广度优先遍历(BFS)的原理实现(包括JavaJavaScript)。现在用户询问C语言中的实现方法。我们将分别用C语言实现DFS(包括递归非递归)BFS。 注意:在C语言中,我们需要自己定义二叉树节点结构,并实现栈队列(因为C标准库没有提供栈队列容器)。为了简化,我们可以用数组模拟栈,用数组或链表实现队列。这里我们使用数组模拟栈循环队列。 步骤: 1. 定义二叉树节点结构。 2. 实现深度优先遍历(DFS): a. 递归实现:先序、中序、后序。 b. 非递归实现:使用栈(这里以先序遍历为例)。 3. 实现广度优先遍历(BFS):使用队列。 注意:在非递归遍历中,要防止栈溢出(深度很大时)队列溢出(广度很大时)。这里我们假设树不会太大。 我们首先定义二叉树节点: ```c typedef struct TreeNode { int data; // 节点数据 struct TreeNode* left; // 左子节点 struct TreeNode* right; // 右子节点 } TreeNode; ``` 深度优先遍历(DFS)递归实现: 先序遍历(根->左->右) ```c void preOrderRecursive(TreeNode* root) { if (root == NULL) return; printf("%d ", root->data); // 访问根节点 preOrderRecursive(root->left); preOrderRecursive(root->right); } ``` 中序遍历(左->根->右) ```c void inOrderRecursive(TreeNode* root) { if (root == NULL) return; inOrderRecursive(root->left); printf("%d ", root->data); inOrderRecursive(root->right); } ``` 后序遍历(左->右->根) ```c void postOrderRecursive(TreeNode* root) { if (root == NULL) return; postOrderRecursive(root->left); postOrderRecursive(root->right); printf("%d ", root->data); } ``` 深度优先遍历(DFS)非递归实现(先序遍历): 使用栈(数组模拟栈) 步骤: 1. 创建一个栈,并将根节点入栈。 2. 当栈非空时: a. 弹出栈顶节点并访问。 b. 将其右子节点入栈(如果有)。 c. 将其左子节点入栈(如果有)。 注意:由于栈是后进先出,所以先右后左,保证左子树先被访问。 假设栈的最大容量为100(根据实际情况调整)。 ```c void preOrderNonRecursive(TreeNode* root) { if (root == NULL) return; // 定义栈 TreeNode* stack[100]; int top = -1; // 栈顶指针 stack[++top] = root; // 根节点入栈 while (top >= 0) { // 弹出栈顶 TreeNode* node = stack[top--]; printf("%d ", node->data); // 先右后左入栈 if (node->right != NULL) { stack[++top] = node->right; } if (node->left != NULL) { stack[++top] = node->left; } } } ``` 广度优先遍历(BFS): 使用队列(这里使用数组模拟循环队列) 步骤: 1. 创建一个队列,将根节点入队。 2. 当队列非空时: a. 出队一个节点并访问。 b. 将其左子节点入队(如果有)。 c. 将其右子节点入队(如果有)。 注意:队列的容量也需要预先设定(这里设为100)。 ```c void bfs(TreeNode* root) { if (root == NULL) return; // 定义队列 TreeNode* queue[100]; int front = 0; // 队头指针 int rear = 0; // 队尾指针 queue[rear++] = root; // 根节点入队 while (front != rear) { // 出队 TreeNode* node = queue[front++]; // 循环队列,防止越界(这里假设不会满,因为节点个数不超过100) printf("%d ", node->data); // 左子节点入队 if (node->left != NULL) { queue[rear++] = node->left; // 如果rear达到数组末尾,可以考虑循环(这里简单处理,假设树不大) } // 右子节点入队 if (node->right != NULL) { queue[rear++] = node->right; } } } ``` 注意:上述队列实现是顺序队列,当队列满时(rear==100)会溢出。在实际应用中,应该使用循环队列或者动态扩容。这里为了简单,假设树节点不超过100。 总结: - DFS递归:简洁,但可能栈溢出(树很深时)。 - DFS非递归:显示使用栈,避免了递归的栈溢出问题(但我们的栈是固定大小的,仍然可能溢出,可以动态扩容栈)。 - BFS:使用队列按层遍历,适合求最短路径等问题。 引用说明: [1]中提到深度优先遍历有三种递归遍历方法(先序、中序、后序),并约定先遍历左子树再遍历右子树[^1]。 [2]中介绍了二叉树的四种遍历方法(前序、中序、后序层次遍历)的C语言实现,包括递归非递归[^2]。 相关问题: 1. 如何用非递归方法实现二叉树的中序遍历后序遍历? 2. 在广度优先遍历中,如何记录每个节点的层次? 3. 深度优先遍历的非递归实现中,如何避免栈溢出问题? 4. 如何在遍历二叉树时动态分配栈队列的空间以避免固定大小的限制? 注意:由于用户要求用中文回答,并且按照指定格式,我们在代码中已经使用了注释,并在总结部分使用中文。 </think>### C语言实现二叉树深度优先遍历广度优先遍历 #### **一、二叉树节点定义** ```c typedef struct TreeNode { int data; // 节点数据 struct TreeNode* left; // 左子节点 struct TreeNode* right; // 右子节点 } TreeNode; ``` #### **二、深度优先遍历(DFS)实现** ##### 1. **递归实现** ```c // 先序遍历(根-左-右) void preOrder(TreeNode* root) { if (root == NULL) return; printf("%d ", root->data); // 访问根节点 preOrder(root->left); // 递归左子树 preOrder(root->right); // 递归右子树 } // 中序遍历(左-根-右) void inOrder(TreeNode* root) { if (root == NULL) return; inOrder(root->left); printf("%d ", root->data); inOrder(root->right); } // 后序遍历(左-右-根) void postOrder(TreeNode* root) { if (root == NULL) return; postOrder(root->left); postOrder(root->right); printf("%d ", root->data); } ``` > **特点**:简洁易实现,空间复杂度$O(h)$($h$为树高),但递归深度过大时可能栈溢出[^1]。 --- ##### 2. **非递归实现(显式栈)** ```c #include <stdlib.h> #define MAX_SIZE 100 // 栈最大容量 // 先序遍历非递归 void preOrderNonRecursive(TreeNode* root) { if (root == NULL) return; TreeNode* stack[MAX_SIZE]; // 栈初始化 int top = -1; // 栈顶指针 stack[++top] = root; // 根节点入栈 while (top >= 0) { TreeNode* node = stack[top--]; // 弹出栈顶 printf("%d ", node->data); // 右子节点先入栈(后出) if (node->right != NULL) stack[++top] = node->right; // 左子节点后入栈(先出) if (node->left != NULL) stack[++top] = node->left; } } ``` > **关键**:利用栈的LIFO特性,右子节点先入栈保证左子树优先访问[^2]。 --- #### **三、广度优先遍历(BFS)实现** ```c #include <stdlib.h> #define MAX_QUEUE 100 void bfs(TreeNode* root) { if (root == NULL) return; TreeNode* queue[MAX_QUEUE]; // 队列初始化 int front = 0, rear = 0; // 队列头尾指针 queue[rear++] = root; // 根节点入队 while (front < rear) { TreeNode* node = queue[front++]; // 出队 printf("%d ", node->data); // 左子节点入队 if (node->left != NULL) queue[rear++] = node->left; // 右子节点入队 if (node->right != NULL) queue[rear++] = node->right; } } ``` > **核心**: > - 使用队列的FIFO特性确保层级顺序[^1] > - 空间复杂度$O(w)$($w$为树最大宽度) --- #### **四、性能对比与应用场景** | **指标** | **DFS递归** | **DFS非递归** | **BFS** | |----------------|----------------|------------------|------------------| | **空间开销** | $O(h)$ | $O(h)$ | $O(w)$ | | **栈溢出风险** | 高(深树) | 可控(固定栈) | 无 | | **适用场景** | 路径回溯、搜索 | 深树遍历 | 层级分析、最短路径 | > **典型应用**: > - DFS:查找所有根到叶子的路径、表达式树求值 > - BFS:二叉树层序遍历、最小深度计算 --- ### 相关问题 1. 如何用非递归实现二叉树的中序遍历后序遍历? 2. 在广度优先遍历中,如何记录每个节点所在的层级? 3. 深度优先遍历的非递归实现为何需要显式栈?与递归栈有何区别? 4. 如何优化BFS的空间复杂度以处理超宽二叉树? [^1]: 二叉树遍历——深度优先遍历广度优先遍历 [^2]: C语言实现二叉树四种遍历方法
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值