大话数据结构 第七章 图(二) 最小生成树、最短路径、拓扑排序、关键路径算法

本文详细介绍了图的几种重要算法:Prim和Kruskal算法用于构建最小生成树,Dijkstra和Floyd算法解决最短路径问题,以及拓扑排序算法。内容涵盖算法原理、适用场景及复杂度分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大话数据结构 第七章 图(二) 最小生成树、最短路径、拓扑排序、关键路径算法

最小生成树

定义

  • 所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接起来,并且使得权值的和最小
  • 最小生成树:构造连通网的最小代价生成树

Prim算法

  • 中心思想是以某顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树
  • 假设N=(V,{E})是连通网,TE是N上最小生成树中边的集合。算法从U={u0},TE={}开始。重复执行下述操作:
  • 在所有u∈U,v∈V-U的边(u,v)∈E中找一条代价最小的边(u0,v0)并入集合TE,同时v0并入U,直至U=V为止。此时TE中必有n-1条边,则T=(V,{TE})为N的最小生成树
  • 主要针对稠密图(边数较多时)
  • 算法的时间复杂度为O(n^2)

Kruskal算法

  • 中心思想是以边为目标去构建,因为权值是在边上,直接去找最小权值得边来构建最小生成树,构建时要考虑是否形成了环路
  • 假设N=(V,{E})是连通网,则令最小生成树的初始状态为只有n个顶点而无边的非连通图T={V, {} },图中每个顶点自成一个连通分量。在E中选择代价最小的边,若该边依附的顶点落在T中不同的连通分量上,则将此边加入到T中,否则舍去此边
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值