KMP算法

http://blog.csdn.net/liuben/archive/2009/08/04/4409505.aspx

http://www.cnblogs.com/Leo_wl/archive/2010/05/21/1740577.html

 

摘要:KMP算法是字符串匹配的经典算法,由于其O(m+n)的时间复杂度,至今仍被广泛应用。大道至简,KMP算法非常简洁,然而,其内部却蕴含着玄妙的理论,以至许多人知其然而不知其所以然。本文旨在解开KMP算法的内部玄妙所在,希望能够有助于学习与理解。

1、KMP算法
    一种改进的字符串匹配算法,由D.E.Knuth与V.R.Pratt和J.H.Morris同时发现,因此称之为KMP算法。此算法可以在O(n+m)的时间数量级上完成串的模式匹配操作,其基本思想是:每当匹配过程中出现字符串比较不等时,不需回溯指针,而是利用已经得到的“部分匹配”结果将模式向右“滑动”尽可能远的一段距离,继续进行比较。

 

2、基于有限自动机理解算法
    KMP 算法看似简单,其实要完全理解还是有困难的。KMP算法其实可以看成是一个有限自动机,分为 2 部分:第一部分自动机的构造 ( 对应一般的说法就是失效函数,转移函数, overlap 函数 ) ,第二部分在自动机上搜索过程。举个例子: 目标串 T = acabaabaabcacaabc; 模式串 P=abaabcac ;根据模式串构造自动机,向前的箭头表示搜索前进的方向。向后的箭头表示不匹配的回溯,即失效函数,或者状态变迁函数。例如:
 f(j=1) = 0;
 f(j=2) = 0;
 f(j=3) = 1;
 f(j=4) = 1;
 f(j=5) = 2;
 f(j=6) = 0;
 f(j=7) = 1;

 

    KMP本质上是构造了DFA并进行了模拟,因此很显然一旦从模版T构造了自动机D,用D去匹配主串S的过程就是线性的。KMP最引人入胜的地方就在于构造D的自匹配过程,它充分利用了D是一个DAG的性质,使得构造过程也是线性的。KMP算法不需要计算变迁函数,只用到辅助数组Next,即模式串自身的特征向量。特征向量可以用模式与其自身进行比较,预先计算出来,它可用于加快字符串匹配算法与有限自动机匹配器的执行速度。

 

 

   
3、Next特征数组构造
    模式串P开头的任意个字符,把它称为前缀子串,如p0p1p2…pm-1。在P的第i位置的左边,取出k个字符,称为i位置的左子串,即pi-k+1... pi-2 pi-1 pi。求出最长的(最大的k)使得前缀子串与左子串相匹配称为,在第i位的最长前缀串。第i位的最长前缀串的长度k就是模板串P在位置i上的特征数n[i]特征数组成的向量称为该模式串的特征向量。
   可以证明对于任意的模式串p=p0p1…pm-1,确实存在一个由模式串本身唯一确定的与目标串无关的数组next,计算方法为:
   (1)  求p0…pi-1中最大相同的前缀和后缀的长度k;
   (2)  next[i] = k;

 

   作为特殊情况,当i=0时,令next[i] = -1;显然,对于任意i(0≤i<m),有next[i] < i;假定已经计算得到next[i], 那么next[i+1] = ? 特征数ni ( -1≤ ni ≤ i )是递归定义的,定义如下:
   (1) n[0] = -1,对于i > 0的n[i] ,假定已知前一位置的特征数 n[i-1]= k ;
   (2) 如果pi = pk ,则n[i] = k+1 ;
   (3) 当pi ≠ pk 且k≠0时,则令k = n [k -1] ; 让(3)循环直到条件不满足;
   (4) 当qi ≠ qk 且k = 0时,则ni = 0;

 

   根据以上分析,可以得到Next特征数组的计算方法,算法代码如下:

  1. void get_next(SString T, int &next[])   
  2. {   
  3.     //求模式串T的next函数值并存入数组next    
  4.     i = 1; next[1] = 0; j = 0;   
  5.     while (i < T[0])    
  6.     {   
  7.         if(j ==0 || T[i] == T[j])    
  8.         {   
  9.             ++i; ++j; next[i] = j;   
  10.         }    
  11.         else     
  12.         {   
  13.             j = next[j];   
  14.         }      
  15.     }   
  16. }  

 

 

   文献[5]中解释了以上计算方法存在一定缺陷,存在多比较的情况,可对其进行修正,得到如下算法:

 

 

  1. void get_next(SString T, int &next[])   
  2. {   
  3.     //求模式串T的next函数值并存入数组next    
  4.     i = 1; next[1] = 0; j = 0;   
  5.     while (i < T[0])    
  6.     {   
  7.         if(j ==0 || T[i] == T[j])    
  8.         {   
  9.             ++i; ++j;   
  10.             if (T[i] != T[j])    
  11.                 next[i] = j;   
  12.             else   
  13.                 next[i] = next[j];   
  14.         }    
  15.         else     
  16.         {   
  17.             j = next[j];   
  18.         }      
  19.     }   
  20. }  

 

 


   4、算法实现
   KMP算法的难点就是有限自动机的构造和特征向量的计算。解决了这两个问题后,具体匹配算法就很简单了。

 

   int   Index_KMP(SString   S,SString   T,int   pos){  
              //利用模式串T的next函数求T在主串S中第pos个字符之后的位置的KMP算法。  
              //其中,T非空,1≤pos≤StrLength(S)。  
              i=pos;   j=1;  
              while(i <= S[0] && j<= T[0]){  
                      if(j == 0 || S[i] == T[j]) { ++i; ++j; }//继续比较后继字符  
                      else   j = next[j];//模式串象右移动  
              }  
              if(j>T[0])   return   i-T[0];//匹配成功  
              else   return   0;  
   }//Index_KMP  

 


    算法相关理论分析与证明,以及算法复杂性分析,若感兴趣请参考文献[3]、[4]、[5],这里不再赘述。

5、参考文献
[1] http://wansishuang.javaeye.com/blog/402018
[2] http://richardxx.yo2.cn/articles/kmp和extend-kmp算法.html 
[3] KMP算法讲义PPT(Hu Junfeng, Peking University)
[4] 算法导论(第32章 字符串匹配)
[5] 数据结构(第4章 串)

### KMP算法的实现 KMP算法是一种高效的字符串匹配算法,它通过构建部分匹配表(也称为`next`数组)来减少不必要的回溯操作[^2]。以下是基于Python语言的KMP算法实现: ```python def compute_next_array(pattern): next_arr = [-1] * len(pattern) i, j = 0, -1 while i < len(pattern) - 1: if j == -1 or pattern[i] == pattern[j]: i += 1 j += 1 next_arr[i] = j else: j = next_arr[j] return next_arr def kmp_search(text, pattern): m, n = len(text), len(pattern) next_arr = compute_next_array(pattern) i, j = 0, 0 while i < m and j < n: if j == -1 or text[i] == pattern[j]: i += 1 j += 1 else: j = next_arr[j] if j == n: return i - j # 返回匹配起始位置 return -1 # 表示未找到匹配项 ``` 上述代码分为两部分: - `compute_next_array()` 函数用于计算模式串的部分匹配表(即`next`数组)。这部分的核心在于利用已知的最大公共前后缀长度来优化后续匹配过程[^5]。 - `kmp_search()` 函数则负责执行具体的字符串匹配逻辑。 --- ### KMP算法的应用场景 #### 文本编辑器中的查找功能 在文本编辑器中,当用户输入一段文字并希望快速定位某个关键词时,可以采用KMP算法完成这一任务。相比传统的暴力匹配方法,KMP能够在更短的时间内返回结果,尤其适用于大规模文档环境下的搜索需求[^1]。 #### 数据清洗与预处理 在大数据领域,经常需要对海量日志文件或其他形式的数据集进行过滤或提取特定字段的操作。此时如果目标子串固定不变,则可预先生成对应的`next`数组,在多次查询过程中显著提升效率[^3]。 #### 生物信息学研究 DNA序列由四种碱基组成(A,T,C,G),因此对于某些基因片段的研究工作而言,频繁涉及相似结构单元之间的对比分析。借助于KMP技术,研究人员能够更加便捷地识别出感兴趣的区域及其分布规律[^4]。 --- ### 性能优势总结 总体来看,由于引入了额外的信息存储机制——即所谓的“失败指针”,使得整个流程无需反复跳转至初始状态重新尝试;从而大幅降低了最坏情况下的时间开销,并保持相对稳定的内存占用水平[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值