LeetCode63.不同路径

题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
在这里插入图片描述

网格中的障碍物和空位置分别用 1 和 0 来表示。

说明:m 和 n 的值均不超过 100。

示例 1:

输入:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:

  1. 向右 -> 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右 -> 向右

思路

这道题与LeetCode62有相似之处,只不过是在表格中间加了障碍物,但是思路大体都是一样的。而且像这种求有多少路径或者是多少解的问题,无脑用动态规划就完事了!
用DP首先就得列出状态转移方程,因为是二维数组,因此我们可以初始化一个二维DP dp[i][j]用来表示机器人走到第i行第j列的路径总数,因为机器人每次只能向下或者向右移动,因此dp[i][j]取决于机器人到前一个格子的路径总数即dp[i-1][j] + dp[i][j-1],当obstacleGrid[i][j]==0时,是没有障碍物的,==1时是有障碍物的,然后对每个格子的是否是障碍物做一个判断,没有障碍物我们可以表示为1,有障碍物表示为0,这样最后遍历加和即可,加入遇到障碍物也不必加0,为了符合题意,直接break退出循环即可。
因此
状态转移方程:
dp[i][j] = 0,obstacleGrid[i][j] = 1
dp[i][j] = dp[i][j-1] + dp[i-1][j],obstacleGrid[i][j] = 0

代码

class Solution(object):
    def uniquePathsWithObstacles(self, obstacleGrid):
        """
        :type obstacleGrid: List[List[int]]
        :rtype: int
        """
        if obstacleGrid[0][0] or obstacleGrid[-1][-1] == 1:
            return 0
        # m列,n行
        n = len(obstacleGrid)
        m = len(obstacleGrid[0])
        dp = [[0] * m for _ in range(n)]
        for i in range(n):
            if obstacleGrid[i][0] == 0:
                dp[i][0] = 1
            else:
                break
        for j in range(m):
            if obstacleGrid[0][j] == 0:
                dp[0][j] = 1
            else:
                break
        for i in range(1,n):
            for j in range(1,m):
                if obstacleGrid[i][j] == 0:
                    dp[i][j] = dp[i][j-1] + dp[i-1][j]
        return dp[-1][-1]
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页