python调用cplex_DOcplex——怎样成功安装和调用学术版DOcplex

引言

本文介绍如何正确安装和配置学术版docplex

准备

python 3.7

pycharm 社区版(别问为什么用社区版,问就是,不花钱。。。)

cplex studio 12.9(IBM官网下载地址)

** 推荐使用学术版。如果没有,那我也没得办法。

**关于cplex版本问题见上一篇博客 DOcplex系列(一)Cplex&DOcplex 简介

这里python 3.7和pycharm 都是之前在用的,所以已经装好了。

安装

  1. 安装学术版Cplex Studio。

因为docplex需要调用cplex求解器,所以在安装docplex安装包之前,需要提前安装Cplex Studio。这里用的是Cplex Studio12.9学术版。运行安装程序,按照引导一步一步来就可以了。如果不放心,可以自行百度图文教程(其实也一样的)。

  1. 将cplex文件夹拷贝到python文件夹中

从cplex的安装目录中,例如我的路径是:C:\Program Files\IBM\ILOG\CPLEX_Studio129\cplex\python\3.7\x64_win64,找到cplex文件夹

将cplex文件夹拷贝到python 3.7的安装目录中Lib文件夹下site-packages子文件夹中,例如我的路径为:C:\Users\lemur\AppData\Local\Programs\Python\Python37\Lib\site-packages

至此,你就可以在python中,像使用pip一样,直接调用cplex了。

切记:

不可以 直接在pycharm的终端中直接使用 pip install cplex 命令进行安装。这样安装的是非学术版(超级坑,只能求解很小规模的问题,变量不到两千,就报错: CPLEX Error 1016)。

步骤2已经将cplex文件夹拷贝过来了,可以直接调用,所以这里不需要再装一遍cplex。

据说,拷贝完之后,即使卸载cplex studio也不影响python调用,但是我没有试过。

3.安装docplex

在pycharm终端中,使用命令 pip install docplex就可以在当前项目使用的python解释器中安装docplex包了。

至此,安装完毕。

使用时,仅需在代码中引入docplex相应的库就可以用了。

注意:

这里最好使用本地python 3.7的解释器,不要使用项目的虚拟解释器。原因如下:

配置可能会有差别

如果安装在当前项目的虚拟解释器,别的项目调用时需要重新安装docplex。因为其他项目用的是自己的虚拟解释器。这样会带来很多不需要的麻烦。



作者:Infinity123
链接:https://www.jianshu.com/p/022171fa1e1f
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

### 回答1: Python可以通过调用Cplex来解决Traveling Salesman Problem (TSP)。 TSP是一个经典的旅行商问题,涉及寻找一条路径,使得经过所有城市并返回出发点的总距离最小。Cplex是一个非常强大的数学建模系统和解决器,可以用于解决TSP等各种优化问题。 要在Python调用Cplex来解决TSP问题,首先需要安装Cplex和相关的Python库。Cplex有一个专门的Python接口,可以通过pip安装安装完成后,就可以在Python脚本中导入Cplex模块,并创建一个求解器对象。 接下来,需要定义TSP问题的相关参数,比如城市数量、城市之间的距离矩阵等。Cplex提供了丰富的优化建模函数,可以根据具体问题需求来定义变量、目标函数和约束条件。在TSP问题中,变量可以表示城市之间的连接关系,目标函数可以是最小化总距离,约束条件可以是保证每个城市只访问一次等。 完成模型定义后,可以调用Cplex求解器来求解TSP问题。Cplex提供了多种求解方法,比如混合整数编程、分支定界和割平面等。根据求解方法的选择和具体问题的规模,求解过程可能需要花费一定的时间。 求解完成后,可以获取最优解的变量取值和目标函数值。根据需求,可以进一步分析和处理解决方案,比如获取最优路径、计算平均旅行距离等。 总之,通过Python调用Cplex来解决TSP问题是一种高效且便捷的方法。Python的灵活性与Cplex的强大求解能力相结合,可以帮助我们更好地解决各种优化问题,包括TSP。 ### 回答2: Python调用Cplex库来解决旅行商问题(TSP)。Cplex是一个强大的优化求解器,可用于解决各种线性规划和混合整数规划问题。 首先,需要在Python安装Cplex库和相关依赖。可以通过pip命令来安装,如下所示: ```python pip install cplex ``` 接下来,需要导入Cplex库,创建一个Cplex对象,并设置TSP问题的相关参数,例如节点数、距离矩阵等。可以使用以下代码片段实现: ```python import cplex # 创建Cplex对象 problem = cplex.Cplex() # 设置目标函数为最小化 problem.objective.set_sense(problem.objective.sense.minimize) # 设置节点数 num_nodes = 5 # 设置节点间的距离矩阵 distances = [[0, 1, 2, 3, 4], [1, 0, 5, 6, 7], [2, 5, 0, 8, 9], [3, 6, 8, 0, 10], [4, 7, 9, 10, 0]] # 添加变量和约束 var_names = [] var_types = "" var_lb = [] var_ub = [] constraint_names = [] constraint_senses = "" rhs_values = [] # 添加节点访问变量 for i in range(num_nodes): var_names.append("x" + str(i)) var_types += "B" var_lb.append(0) var_ub.append(1) # 添加约束:每个节点只能访问一次 for i in range(num_nodes): row = [] for j in range(num_nodes): if j != i: row.append("x" + str(j)) constraint_names.append("c" + str(i)) constraint_senses += "E" rhs_values.append(1) problem.linear_constraints.add(lin_expr=[cplex.SparsePair(ind=row, val=[1] * (num_nodes - 1))], senses=[constraint_senses[i]], rhs=[rhs_values[i]]) # 添加约束:每个节点必须离开一次 for i in range(num_nodes): row = [] for j in range(num_nodes): if j != i: row.append("x" + str(j)) constraint_names.append("c" + str(num_nodes + i)) constraint_senses += "E" rhs_values.append(1) problem.linear_constraints.add(lin_expr=[cplex.SparsePair(ind=row, val=[1] * (num_nodes - 1))], senses=[constraint_senses[num_nodes + i]], rhs=[rhs_values[num_nodes + i]]) # 设置目标函数 problem.variables.add(obj=[distances[i][j] for i in range(num_nodes) for j in range(num_nodes)], lb=var_lb, ub=var_ub, types=var_types, names=var_names) # 求解问题 problem.solve() # 输出最优解 print("最优解:", problem.solution.get_values()) ``` 上述代码片段实现了一个简化的TSP问题,节点数为5,节点间的距离矩阵已给定。代码首先创建了一个Cplex对象,然后设置了问题的目标函数、变量和约束,最后通过调用`problem.solve()`来求解问题,并输出最优解。 通过以上方式,可以使用Python调用Cplex库来解决TSP问题,并得到最优解。当然,实际的TSP问题可能更加复杂,可能需要进一步优化模型和算法来解决。 ### 回答3: Python调用Cplex TSP(Traveling Salesperson Problem)可以通过以下步骤完成。 首先,我们需要确保已经安装CplexPythonCplex库。Cplex是一种用于求解优化问题的强大工具,而Cplex库是PythonCplex的接口。 然后,我们可以使用Python代码来调用Cplex库,并定义TSP问题的变量和参数。例如,我们可以创建一个空的Cplex问题对象,并指定问题的目标函数和约束条件。 接下来,我们需要定义问题的变量。在TSP问题中,变量通常代表城市之间的路径。我们可以使用Cplex的变量类型来定义这些变量,例如二进制变量或整数变量。 然后,我们可以使用Python代码来设置问题的目标函数。在TSP问题中,目标是找到一条路径,使得旅行的总距离最短。我们可以使用Cplex库提供的函数来设置目标函数。 随后,我们可以设置问题的约束条件。在TSP问题中,约束条件通常是确保每个城市都恰好被访问一次的条件。我们可以使用Cplex库提供的函数来设置这些约束条件。 最后,我们可以使用Cplex的求解器来解决TSP问题,并获取最优解。我们可以使用Cplex库提供的函数来调用求解器,并检查求解器的返回结果。如果返回结果为最优解,则可以获取解的相关信息,例如路径和总距离。 总的来说,Python调用Cplex TSP可以通过安装Cplex库、定义问题的变量和参数、设置目标函数和约束条件,最后使用Cplex的求解器来获取最优解。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值