PySpark学习笔记(6)——数据处理

在正式建模之前,需要非常了解建模所要用到的数据,本文主要介绍一些常见的数据观测和处理方法。

1.数据观测

(1)统计数据表中每一列数据的缺失率

%pyspark

#构造原始数据样例
df = spark.createDataFrame([
    (1,175,72,28,'M',10000),
    (2,171,70,45,'M',None),
    (3,172,None,None,None,None),
    (4,180,78,33,'M',None),
    (5,None,48,54,'F',None),
    (6,160,45,30,'F',5000),
    (7,169,65,None,'M',5000),],
    ['id','height','weight','age','gender','income'])

res_df = df.rdd.map(lambda x:x).map(list).collect()

#统计每列的数据缺失率
for i in range(6):
    #获取第i列数据
    columns = [item[i] for item in res_df]
    #统计第i列数据中非空的数据数
    count = sum([1 for item in columns if item])
    #计算第i列的数据缺失率
    missing_rate = 1 - count/len(res_df)
    print("第{}列的数据缺失率为:{:.4f}%".format(i+1,missing_rate*100))

输出结果如下所示:

(2)统计指定列数据的详细信息

%pyspark  
 
from pyspark.sql import functions as F

#构造原始数据样例
df = spark.createDataFrame([    
    (1,175,72,28,'M',10000),    
    (2,171,70,45,'M',8000),    
    (3,172,None,27,'F',7000),    
    (4,180,78,30,'M',4000),    
    (5,None,48,54,'F',6000),    
    (6,160,45,30,'F',5000),    
    (7,169,65,36,'M',7500),],    
    ['id','height','weight','age','gender','income'])

#先基于gender分组,然后用各种聚合函数(max,min,mean,stddev)统计age列的信息
df_summary = sorted(df.groupBy(df.gender).agg(F.max(df.age),F.min(df.age),F.mean(df.age),F.stddev(df.age)).collect())

print(df_summary )
 

输出结果如下所示:

(3)获取DataFrame中Vector的数据信息

%pyspark

from pyspark.ml.linalg import Vectors

df = sc.parallelize([
    ("assert",Vectors.dense([1,2,3])),
    ("require",Vectors.sparse(3,{1:2})),
    ("announce",Vectors.sparse(3,{0:1,2:4}))
    ]).toDF(["word","vector"])

#提取DataFrame中的Vector中的数据信息
def extract(row):
    return (row.word,) + tuple(row.vector.toArray().tolist())
    
res_df = df.rdd.map(extract).toDF(["word","v_1","v_2","v_3"])
res_df.show()

#获取指定列的数据
print(res_df.select("word","v_1").show())

输出结果如下所示:

 

2.数据处理

本部分主要记录一些数据处理的小技巧。

(1)为列表生成索引

%pyspark

#通过enumerate为col_list生成索引
col_list = ['username','id','gender','age']
mapping_list = list(enumerate(sorted(col_list)))
print(mapping_list)

输出结果如下所示:

 

(2)将list转换成dict

%pyspark

#将mapping_list中的key和value互换位置,并转换为dict
revs_maplist = {value:idx for [idx,value] in mapping_list}
print(revs_maplist)

输出结果如下所示:

(3)嵌套for循环简写

%pyspark

test_list = [1,2,-3,10,None,-5,0,10.5]

#for循环简写1 (此处if在for循环后面)
result1 = [2*item  for item in test_list if item != None]
print(result1)

#for循环简写2 (此处if-else必须同时存在且在for循环前面)
result2  = [1 if item > 0 else 0 for item in result1]
print(result2)

输出结果如下所示:

(4)以指定条件增加新列

%pyspark  

from pyspark.sql import functions as F
  
#构造原始数据样例  
df = spark.createDataFrame([  
    (1,175,72,28,'M',10000),  
    (2,171,70,45,'M',8000),  
    (3,172,None,None,'F',7000),  
    (4,180,78,33,'M',4000),  
    (5,None,48,54,'F',6000),  
    (6,160,45,30,'F',5000),  
    (7,169,65,None,'M',7500),],  
    ['id','height','weight','age','gender','income'])  
    
#1.给df增加一列数据'income2',income2 = income + 2000.
test1 = df.withColumn("income2",df.income + 2000)
#print(test1.show())

#2.给test1增加一列数据'label',当gender=='M'时,label=1,否则label=0.
test2 = test1.withColumn("label",F.when(test1.gender == 'M',1).otherwise(0))
#print(test2.show())

#3.给test2增加一列数据'thedate',其值固定为'2018-04-11'
test3 = test2.withColumn("thedate",F.lit('2018-04-11'))
print(test3.show())

输出结果如下所示:

 

 

 

 

 

 

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页