自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 资源 (1)
  • 收藏
  • 关注

原创 机器学习实战学习笔记9——Logistic回归

1.logistic回归概述1.1 logistic回归介绍Logistic回归是一种广义的线性回归分析模型,是研究二分类观察结果y与一些影响因素(x_1,x_2,…,x_n)之间关系的一种多变量分析方法。通常研究某些因素条件下某个结果是否发生,比如医学中根据症状来判断病人是否患有某种疾病。1.2 Logistic回归原理Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式

2016-12-30 21:53:19 353

原创 机器学习实战学习笔记8——朴素贝叶斯

1.朴素贝叶斯概述1.1朴素贝叶斯介绍朴素贝叶斯(Naïve Bayesian)是基于贝叶斯定理与特征条件独立假设的分类方法。朴素贝叶斯分类器基于一个简单的假设:给定目标值之间属性相互独立。1.2 朴素贝叶斯工作原理假设有一个数据集,由两类组成,对于每个样本的分类,都是已知的。现在有一个新的点new_point(x,y) ,其分类未知。我们可以用p1(x,y)来表示数据点(x,y)属于类别1的概率;

2016-12-28 20:41:06 439

原创 机器学习实战学习笔记7——Kmeans

1.Kmeans算法概述1.1 Kmeans算法介绍Kmeans是发现给定数据集的K个簇的算法。簇个数K是用户给定的,每一个簇通过其质心,即簇中所有点的中心来描述。1.2 Kmeans算法工作流程(1)创建K个质点作为起始质心; (2)当任意一个点的簇分配结果发生改变时: 对数据集中的每个数据点 对每个质心 计算质心与数据点之间的距离

2016-12-26 20:55:26 349

原创 机器学习实战学习笔记6——AdaBoost

1.AdaBoost概述1.1 AdaBoost介绍AdaBoost是一种迭代算法,其核心思想是针对同一训练集训练不同的分类器(弱分类器),然后把这些分类器集合起来,构成一个最终的强分类器。1.2 AdaBoost优缺点(1)优点:泛化错误率低,易编码,可以应用在大部分分类器上,无需参数调整。 (2)缺点:对离群点敏感。

2016-12-21 19:49:55 388

原创 机器学习实战学习笔记5——主成分分析(PCA)

1.PCA算法概述1.1 PCA算法介绍主成分分析(Principal Component Analysis)是一种用正交变换的方法将一个可能相关变量的观察值集合转换成一个线性无关变量值集合的统计过程,被称为主成分。主成分的数目小于或等于原始变量的数目。1.2 PCA算法原理PCA的实质是在能尽可能好地代表原特征的情况下,将原特征进行线性变换,映射到低维空间。1.3 PCA 算法优缺点(1)优点:

2016-12-01 12:25:04 828

seo视频网站

这是有关seo设计的简介。(新人必看,txt格式)。

2011-10-17

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除