HIVE的数据倾斜

HIVE的数据倾斜

什么是数据倾斜

由于数据分布不均匀,造成大量的数据集中到一个分区里,造成数据热点

主要表现

当其他reduce运行结束后,有少量的reduce一直在计算,因为其中处理数据量是其他的几倍,所以计算时间就很长,是其他的几倍

出现数据倾斜的原因

key值分布不均匀
业务数据本身的特性
建表考虑不周到 :应该建立分区表没有建立
某些sql语句本身就存在数据倾斜

业务场景

空值产生的数据倾斜

联想男女,很多人可能提交个人资料的时候不填性别,这会造成有空值,当两个表相关联的时候,就会产生数据倾斜的问题

解决办法一:把不是null的提取出来放一个分区里,把null的放一个分区里

select * from log a join user b on a.gender is not null and a.gender = b.gender 
union all
select * from log c where c.gender is null;

解决办法二:赋予空值新的key值

select * from log a left outer join user b on
case when a.gender is null then concat('gender',rand()) 
else a.gender end = b.gender

赋予空值,新的key值,效率更好,这种办法IO少了
使本身为null的所有记录不会拥挤在同一个reduceTask了,会分散到多个reduceTask中,由于null值关联不上,处理后并不影响结果

key分布极其不均匀,group时造成数据倾斜

就上面的案例来说,可能一个表中,男生7个,而女生只有一个,如果按性别分组计算的话,就容易出现数据倾斜

——> 所有数据会分别进入两个reduce节点中,而男性的节点数据量过大,计算非常缓慢。

解决办法:为key值加盐
1:与另一个字段组合,形成新字段,按新字段分组
2: 使用随机数与性别做组合,与上面的空值解决办法差不多

不同数据类型产生数据倾斜

比如有两张表,stu表有user_id为int,log表中user_id既有string,又有int,当进行join时,默认的hash操作会按照int类型的id去进行分配,string的id会被分配到另一个reducer中

解决方案:将数字类型id转换成string类型的id

select * from user a left outer join log b on b.user_id = cast(a.user_id as string)

大小表关联查询产生数据倾斜

小大表

以大表a和小表b为例,所有的mapTask节点装载小表b的数据,a1
和b做全量数据做连接,意思就是先使用mapjoin,先让小的维度表先进内存。在map端完成reduce

解决办法:将小表的数据放到maptask节点中,让小表进行map操作,这样就不用去reduce上做汇总,可以减少IO

具体操作

SET hive.auto.convert.join = true; //设置MapJoin优化自动开启
SET hive.mapjoin.smalltable.filesize=25000000//设置小表不超过多大时开启mapjoin优化

大大表

就将大表切分成小表,然后分别mapjoin

Hive数据倾斜是指在Hive中进行数据处理时,数据在不同reduce任务上分布不均匀的现象。这种情况可能导致某些reduce任务负载过重,而其他任务负载较轻。常见的数据倾斜问题包括单个key的数据量过大、空key的存在等情况。 解决Hive数据倾斜问题的方法之一是使用group by去重然后统计行数的方式,但需要注意数据倾斜问题。这种方法可以通过将数据按照某个字段进行分组,去除重复值,然后统计每个组的行数来解决数据倾斜的问题。 另一种常见的数据倾斜问题是空key的存在。当两个进行联接操作时,联接字段可能存在很多null值,或者集中出现在某个特定的值上。这样就会导致它们计算出的哈希值相同,将它们都放到同一个reduce任务中,从而导致该任务的负载过大,而其他任务负载较轻,这也就是我们所说的数据倾斜问题。 综上所述,Hive数据倾斜是指在Hive中进行数据处理时,数据在不同reduce任务上分布不均匀的现象。解决数据倾斜的方法包括使用group by去重统计行数和处理空key的问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Hive数据倾斜常见场景及解决方案(超全!!!)](https://blog.csdn.net/weixin_51981189/article/details/127419638)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值