令狐Cong
码龄3年
关注
提问 私信
  • 博客:22,705
    22,705
    总访问量
  • 45
    原创
  • 64,732
    排名
  • 190
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:个人github链接(https://github.com/Frankie32244)

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广西
  • 加入CSDN时间: 2021-09-29
博客简介:

Frankie0910314的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    235
    当月
    4
个人成就
  • 获得253次点赞
  • 内容获得15次评论
  • 获得239次收藏
  • 代码片获得162次分享
创作历程
  • 40篇
    2024年
  • 4篇
    2023年
  • 1篇
    2022年
成就勋章
TA的专栏
  • 数据结构与算法
    2篇
  • LeetCode
    2篇
  • IDE
    4篇
  • 计算机视觉
    1篇
  • Mysql
    2篇
  • Windows
    2篇
  • 聚类
    11篇
  • git
    2篇
  • C语言
    4篇
  • Linux
    1篇
  • Java
    4篇
  • vue
    1篇
  • AI
    9篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

windows搜索文件的打开记录

【1】找到“开始菜单——右键——运行”或“按WIN+R键”,点开运行;【2】输入“recent”点击确定;
原创
发布博客 2024.08.07 ·
297 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

论文阅读 | Incomplete Multi-view Clustering via Prototype-based Imputation

IJCAI 23年的文章,出自彭玺团队。附上源码:为了实现所提出的基于原型的插补方法,作者提出了一个双流模型,通过设计一个双注意力层和双对比学习损失模块。由于所提出的模型,**实例的通用性和视图的多样性(instance commonality & view versatility)**可以得到很好的表示,从而提高IMvC的性能。大量的实验结果表明,该模型在聚类和数据恢复性能的优越性。
原创
发布博客 2024.07.04 ·
988 阅读 ·
18 点赞 ·
0 评论 ·
23 收藏

论文阅读 | Contrastive Clustering

2021年AAAI的文章,出自彭玺团队。本文提出了一种名为对比聚类(CC)的在线聚类方法,该方法明确地执行实例级和簇级对比学习。具体来说,对于给定的数据集,通过数据增强构建正负实例对,并将其投影到特征空间中。然后,在特征矩阵的行空间和列空间中分别进行实例级和簇级对比学习,通过最大化正对之间的相似性并最小化负对之间的相似性。我们的关键观察是,特征矩阵的行可以被看作是实例的软标签,相应地,列可以被进一步看作是簇的表示。通过同时优化实例级和簇级对比损失,模型以端到端的方式联合学习表示和簇分配。
原创
发布博客 2024.07.04 ·
1114 阅读 ·
25 点赞 ·
0 评论 ·
13 收藏

论文阅读 | Dual Contrastive Prediction for Incomplete Multi-view Representation Learning

彭玺团队的一篇发表于PAMI上的文章,附源码。
原创
发布博客 2024.06.21 ·
916 阅读 ·
12 点赞 ·
1 评论 ·
25 收藏

论文阅读 | COMPLETER:Incomplete Multi-view Clustering via Contrastive Prediction

2021年CVPR 的文章,出自川大彭玺团队1、理论框架: COMPLETER 提出了一个新颖的理论框架,将一致性特征表示学习和跨视图数据恢复统一起来。该框架表明,数据恢复和一致性学习是相互促进的。视图内重建损失: 学习视图特定的特征表示,避免平凡解( avoid the trivial solution)。跨视图对比学习损失:通过最大化不同视图之间的互信息来学习跨视图一致性。跨视图双重预测损失:通过最小化不同视图之间的条件熵来恢复缺失的视图(Data recovery)。
原创
发布博客 2024.06.21 ·
643 阅读 ·
11 点赞 ·
1 评论 ·
16 收藏

论文阅读 | Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and Prototype Alignment

本文是出自刘新旺团队的一篇文章,23年被CVPR收录。不完全多视图表示学习模块、跨视图部分样本对齐模块(CPSA)和移位原型对齐模块(SPA)。具体来说,CPSA执行不同视图之间的实例对齐。SPA探索原型之间的最佳匹配对应。然后,使用结构嵌入填补策略来填补缺失的嵌入。最终,将完整的嵌入和填充的嵌入连接起来,然后用K-means聚类算法以获得最终结果。
原创
发布博客 2024.06.15 ·
1081 阅读 ·
27 点赞 ·
3 评论 ·
31 收藏

Error java 不支持发行版本5

=StackOverflow参考stack-overflow该回答下第一个答案方法步骤:
原创
发布博客 2024.06.07 ·
298 阅读 ·
4 点赞 ·
0 评论 ·
1 收藏

SwaggerUI界面报错 No operations defined in spec!

swagger.base-package=com.example.demo # 修改完成!!!!
原创
发布博客 2024.06.07 ·
405 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

springboot 项目报错“Failed to load ApplicationContext”

在Spring 单元测的时候容易发生的bug。主要原因是在测试时注入的是具体实现而不是接口。
原创
发布博客 2024.06.07 ·
699 阅读 ·
8 点赞 ·
0 评论 ·
3 收藏

Springboot 加载不了maven问题

经常会出现从github上clone的springboot项目注解有问题,这是因为没有加载到相关依赖。没加载之前的项目目录,pom.xml是这种图标。
原创
发布博客 2024.06.07 ·
387 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

Leetcode报错 ERROR_stack-overflow on address 0x7fffa50b2ff8

如果没添加注释那一行的句子,就会无限递归调用dfs函数,导致爆栈。
原创
发布博客 2024.06.07 ·
210 阅读 ·
10 点赞 ·
0 评论 ·
1 收藏

IDEA导入spring boot 新项目无法RUN的bug

参考链接
原创
发布博客 2024.06.06 ·
583 阅读 ·
9 点赞 ·
0 评论 ·
3 收藏

VMware上联网

参考博客
原创
发布博客 2024.06.06 ·
180 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

javac The term ‘javac‘ is not recognized as a name of a cmdlet, function, script file, or executable

javac命令就不存在。
原创
发布博客 2024.06.06 ·
421 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

IDEA报错 程序包javax.annotation不存在

【代码】IDEA报错 程序包javax.annotation不存在。
原创
发布博客 2024.06.06 ·
691 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

创建一个vue项目(typescript代码)

reference
原创
发布博客 2024.06.06 ·
160 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

边缘计算(Edge computing)

靠近数据源:边缘计算涉及在网络边缘附近处理数据,即在数据生成的地方,而不是在中央数据中心。比如,手机就是人与云中心之间的边缘结点,网关是智能家居和云中心之间的边缘结点。在理想环境中,边缘计算指的就是在数据产生源附近分析、处理数据,没有数据的流转,进而。降低延迟:通过在数据生成的地方进行数据处理,边缘计算可以显著降低延迟,这对于实时应用程序(如自动驾驶汽车、工业自动化和增强现实)至关重要。节省带宽:只发送必要或预处理的数据到云可以减少带宽需求,这对于网络效率有益,也可以降低传输成本。
原创
发布博客 2024.06.06 ·
225 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

联邦学习(Federal Learning)

​ 简而言之,联邦学习就是一个分布式的机器学习过程,它让所有参与者都能在保持数据隐私的同时,共同合作训练出一个更强大、更智能的模型。尤为重要的领域,如医疗健康、金融服务等。,提升模型效果的同时保护隐私安全。
原创
发布博客 2024.06.06 ·
444 阅读 ·
5 点赞 ·
0 评论 ·
3 收藏

表征学习(Representation Learning)

​ 简单来说,就是让机器通过学习得到数据的高效表示(或叫特征)。这些表示能够揭示数据的本质属性,让机器更好地完成各种任务,比如分类、预测等。这些算法各有特点和应用场景,选择合适的算法需要根据具体任务的需求和数据特性来决定。我的理解就是将各种数据降维表示成向量,易于模型理解和处理。
原创
发布博客 2024.06.06 ·
743 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

迁移学习(Transfer Learning)

源域 (Source domain):已有知识的域目标域 (Target domain):要进行学习的域。
原创
发布博客 2024.06.06 ·
477 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏
加载更多