论文阅读 | Incomplete Multi-view Clustering via Prototype-based Imputation IJCAI 23年的文章,出自彭玺团队。附上源码:为了实现所提出的基于原型的插补方法,作者提出了一个双流模型,通过设计一个双注意力层和双对比学习损失模块。由于所提出的模型,**实例的通用性和视图的多样性(instance commonality & view versatility)**可以得到很好的表示,从而提高IMvC的性能。大量的实验结果表明,该模型在聚类和数据恢复性能的优越性。
论文阅读 | Contrastive Clustering 2021年AAAI的文章,出自彭玺团队。本文提出了一种名为对比聚类(CC)的在线聚类方法,该方法明确地执行实例级和簇级对比学习。具体来说,对于给定的数据集,通过数据增强构建正负实例对,并将其投影到特征空间中。然后,在特征矩阵的行空间和列空间中分别进行实例级和簇级对比学习,通过最大化正对之间的相似性并最小化负对之间的相似性。我们的关键观察是,特征矩阵的行可以被看作是实例的软标签,相应地,列可以被进一步看作是簇的表示。通过同时优化实例级和簇级对比损失,模型以端到端的方式联合学习表示和簇分配。
论文阅读 | Dual Contrastive Prediction for Incomplete Multi-view Representation Learning 彭玺团队的一篇发表于PAMI上的文章,附源码。
论文阅读 | COMPLETER:Incomplete Multi-view Clustering via Contrastive Prediction 2021年CVPR 的文章,出自川大彭玺团队1、理论框架: COMPLETER 提出了一个新颖的理论框架,将一致性特征表示学习和跨视图数据恢复统一起来。该框架表明,数据恢复和一致性学习是相互促进的。视图内重建损失: 学习视图特定的特征表示,避免平凡解( avoid the trivial solution)。跨视图对比学习损失:通过最大化不同视图之间的互信息来学习跨视图一致性。跨视图双重预测损失:通过最小化不同视图之间的条件熵来恢复缺失的视图(Data recovery)。
论文阅读 | Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and Prototype Alignment 本文是出自刘新旺团队的一篇文章,23年被CVPR收录。不完全多视图表示学习模块、跨视图部分样本对齐模块(CPSA)和移位原型对齐模块(SPA)。具体来说,CPSA执行不同视图之间的实例对齐。SPA探索原型之间的最佳匹配对应。然后,使用结构嵌入填补策略来填补缺失的嵌入。最终,将完整的嵌入和填充的嵌入连接起来,然后用K-means聚类算法以获得最终结果。
javac The term ‘javac‘ is not recognized as a name of a cmdlet, function, script file, or executable javac命令就不存在。
边缘计算(Edge computing) 靠近数据源:边缘计算涉及在网络边缘附近处理数据,即在数据生成的地方,而不是在中央数据中心。比如,手机就是人与云中心之间的边缘结点,网关是智能家居和云中心之间的边缘结点。在理想环境中,边缘计算指的就是在数据产生源附近分析、处理数据,没有数据的流转,进而。降低延迟:通过在数据生成的地方进行数据处理,边缘计算可以显著降低延迟,这对于实时应用程序(如自动驾驶汽车、工业自动化和增强现实)至关重要。节省带宽:只发送必要或预处理的数据到云可以减少带宽需求,这对于网络效率有益,也可以降低传输成本。
联邦学习(Federal Learning) 简而言之,联邦学习就是一个分布式的机器学习过程,它让所有参与者都能在保持数据隐私的同时,共同合作训练出一个更强大、更智能的模型。尤为重要的领域,如医疗健康、金融服务等。,提升模型效果的同时保护隐私安全。
表征学习(Representation Learning) 简单来说,就是让机器通过学习得到数据的高效表示(或叫特征)。这些表示能够揭示数据的本质属性,让机器更好地完成各种任务,比如分类、预测等。这些算法各有特点和应用场景,选择合适的算法需要根据具体任务的需求和数据特性来决定。我的理解就是将各种数据降维表示成向量,易于模型理解和处理。