
写在前面
WWW 2024于2024年5月13日至5月17日在新加坡举办。本次WWW 2024共收到2008份提交全文,接收率大约20.2%。本文介绍了WWW 2024中收录的几篇量化交易相关的论文。

论文标题:
FinReport: Explainable Stock Earnings Forecasting via News Factor Analyzing Model
作者单位:
华南理工大学
论文链接:
https://arxiv.org/pdf/2403.02647.pdf
研究内容:
股票收益预测任务因为能在实际情境中满足投资者的需求而受到了显著关注。然而,与金融机构相比,普通投资者挖掘因素和分析新闻的能力有限。另一方面,尽管在金融领域的大型语言模型以对话机器人的形式为用户服务,但用户仍需具备一定的金融知识来提出合理的问题。为了提升用户体验,这篇工作的目标是为普通投资者构建一个自动化系统,即FinReport,以收集信息、进行分析并在总结后生成报告。具体来说,提出的FinReport基于财经新闻公告和多因子模型,以确保报告的专业性。FinReport包含三个模块:新闻因子化模块、回报预测模块和风险评估模块。新闻因子化模块涉及理解新闻信息并将其与股票因素结合,回报预测模块旨在分析新闻对市场情绪的影响,风险评估模块则用于控制投资风险。在真实世界数据集上的广泛实验已经验证了提出的FinReport的有效性和可解释性。

模型框架

部分实验结果
论文标题:
Learning to Generate Explainable Stock Predictions using Self-Reflective Large Language Models
作者单位:
新加坡国立大学
论文链接:
https://arxiv.org/pdf/2402.03659.pdf
研究内容:
解释股票预测通常对于传统的非生成式深度学习模型来说是一项困难的任务,这些模型的解释通常限于对重要文本的注意力权重进行可视化。然而,大型语言模型(LLMs)为这一问题提供了解决方案,因为它们已知的能力是生成人类可读的解释,这对于决策制定过程是有用的。尽管如此,对于LLMs来说,股票预测的任务仍然具有挑战性,因为它需要模型权衡股价上的混沌社会文本影响的不同重要性。当引入解释组件时,问题会逐渐变得更加困难,这要求LLMs能够用口头方式解释为什么某些因素比其他因素更重要。另一方面,到目前为止,对于每个股票趋势的信息,训练集中都需要专家注释的解释样本,这既昂贵又不切实际。为了解决这些问题,文中提出了总结-解释-预测(SEP)框架,它利用一个口头自省agent和近端策略优化(PPO)来使LLM自省如何生成可解释的股票预测,以一种自主的方式。反思agent学习如何通过自我推理过程解释过去的股票运动,而PPO训练器训练模型在测试时生成最可能的解释作为输入文本。PPO训练器的训练样本也是在反思过程中生成的反应,这消除了对人类注释的需要。文中使用SEP框架对一个专门的LLM进行了微调,使其在股票分类任务的预测精度和马修斯相关系数方面都超过了传统的深度学习和LLM方法。为了证明SEP框架的泛化能力,文中进一步在股票组合优化任务上测试了其潜在的收益构建能力,并通过各种组合指标证明了其有效性。

模型框架

部分实验结果
论文标题:
Reinforcement Learning with Maskable Stock Representation for Portfolio Management in Customizable Stock Pools
作者单位:
南洋理工大学
论文链接:
https://arxiv.org/pdf/2311.10801.pdf
研究内容:
组合管理(PM)是一项基础的金融交易任务,它探索如何周期性地将资本重新分配到不同的股票中以追求长期利润。最近,强化学习(RL)已经显示出其潜力来通过与金融市场的互动进行组合管理。然而,现有的工作大多集中在固定的股票池上,这与投资者的实际需求不符。具体来说,目标股票池随着不同投资者对市场状态的不同理解而变化极大,个别投资者可能会临时调整他们希望交易的股票(例如,添加一些热门股票),这导致了可定制股票池(CSPs)。现有的RL方法即使在股票池有微小变化的情况下也需要重新训练RL代理,这导致了高计算成本和不稳定的表现。为了应对这一挑战,文中提出了EarnMore,一个强化学习框架,配合掩码股票表示来处理CSPs的PM,通过在全球股票池中进行一次性训练。具体来说,文中首先介绍了一个机制来掩码目标池以外的股票的表示。其次,重新学习有意义的股票表示,通过一个自我监督的掩码和重建过程。第三,设计了一个重新加权机制,使得组合更加集中于目标池的股票,而忽略目标池以外的股票。通过在美国股市的8个子集股票池上进行广泛实验,证明了EarnMore在US Stock Market的表现优于14个基线,平均利润提高了40%。

模型框架

部分实验结果
往期推荐阅读
解读:ChatGPT在股票市场预测方面的应用
【python量化】多种Transformer模型用于股价预测(Autoformer, FEDformer和PatchTST等)
【python量化】挖掘股价中的图关系:基于图注意力网络的股价预测模型
【python量化】基于backtrader的深度学习模型量化回测框架
【python量化】将Transformer模型用于股票价格预测
【python量化】搭建一个CNN-LSTM模型用于股票价格预测

《人工智能量化实验室》知识星球

加入人工智能量化实验室知识星球,您可以获得:(1)定期推送最新人工智能量化应用相关的研究成果,包括高水平期刊论文以及券商优质金融工程研究报告,便于您随时随地了解最新前沿知识;(2)公众号历史文章Python项目完整源码;(3)优质Python、机器学习、量化交易相关电子书PDF;(4)优质量化交易资料、项目代码分享;(5)跟星友一起交流,结交志同道合朋友。(6)向博主发起提问,答疑解惑。

217

被折叠的 条评论
为什么被折叠?



