RMSE(均方根误差)、MSE(均方误差)、MAE(平均绝对误差)、SD(标准差)

本文深入探讨了机器学习中常用的评估指标,包括RMSE(均方根误差)、MSE(均方误差)、MAE(平均绝对误差)和SD(标准差)。详细解释了这些指标的计算方法及其在模型评价中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

RMSE(Root Mean Square Error)均方根误差

衡量观测值与真实值之间的偏差。

常用来作为机器学习模型预测结果衡量的标准。

RMSE(X, h)=\sqrt{\frac{1}{m}\sum_{i=1}^{m}(h(x_{i})-y_{i})^2}

 

MSE(Mean Square Error)均方误差

MSE是真实值与预测值的差值的平方然后求和平均。

通过平方的形式便于求导,所以常被用作线性回归的损失函数

MSE=\frac{1}{m}\sum_{i=1}^{m}(y_{i}-\hat{y}_{i})^2

 

MAE(Mean Absolute Error)平均绝对误差

是绝对误差的平均值。

可以更好地反映预测值误差的实际情况。

MAE(X, h)=\frac{1}{m}\sum_{i=1}^{m}\left | h(x_{i})-y_{i} \right |

 

SD(Standard Deviation)标准差

方差的算术平均根。

用于衡量一组数值的离散程度。

SD=\sqrt{\frac{1}{N}\sum_{i=1}^{N}(x_{i}-avg(x))^2}

 

ps : 我在csdn博客学latex~

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值