Python数据分析NumPy和pandas(七、面向数组的编程和图形化展示数据初探)

面向数组的编程

使用 NumPy 数组能够简洁的完成多种数据处理任务,否则可能需要编写循环来处理相关任务,大大提高了数据处理的效率,一般来说,矢量化数组运算通常比纯 Python 运算要快得多。这种用数组表达式替换显式循环的做法被称为矢量化。

直接上代码举例更直观。

import numpy as np

# 生成100个等距点 结果是一个长度为1000的一维数组
points = np.arange(-5, 5, 0.01) 

# 用meshgrid函数和points数组生成一个1000*1000的二位矩阵形,赋值给两个变量
xs, ys = np.meshgrid(points, points)

# 计算sqrt(x^2+ y^2)的值
z = np.sqrt(xs ** 2 + ys ** 2)

#输出结果数组
print(z)
#输出结果数组形状
print(z.shape)

输出结果:

[[7.07106781 7.06400028 7.05693985 ... 7.04988652 7.05693985 7.06400028]
 [7.06400028 7.05692568 7.04985815 ... 7.04279774 7.04985815 7.05692568]
 [7.05693985 7.04985815 7.04278354 ... 7.03571603 7.04278354 7.04

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FreedomLeo1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值