POJ 3522 - Slim Span

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Freenm/article/details/69265188

在所有生成树里,找到“最大边权值 减去 最小边权值”最小的那棵生成树。

那么,对于已经某个确定的最小边的所有生成树,我们找到最小生成树,它的“最大边权值 减去 最小边权值”就是这些生成树里最小的。

然后,我们枚举最小边即可。

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 102
#define M 5000
#define INF 2147483647
int n,m;
struct Edge{
    int u,v,w;
}e[M];
bool cmp(Edge a,Edge b){return a.w<b.w;}
int par[N];
int find(int x){return( par[x]==x ? x : par[x]=find(par[x]) );}
int kruskal(int st)//获得最小边,作为开始边
{
    int i,cnt=0;
    for (i=1;i<=n;i++) par[i]=i;//初始化并查集 
    for (i=st;i<m;i++)//遍历后面的每条边 
    {
    	int x=find(e[i].u),y=find(e[i].v);
        if (x != y){//如果这条边的连接的左右节点还未连通 
        	par[y]=x;//将这条边连通 
			if (++cnt==n-1) break;//边计数增加1,如果边数到达了n-1条,那么一棵生成树已完成,跳出 
        }
    }
    if (cnt<n-1) return -1; //如果从开始边往后遍历,遍历完了所有边,依然无法产生一颗生成树,那么返回-1 
    return e[i].w-e[st].w; //否则就返回这棵生成树的“最大边权值 减去 最小边权值”的值 
}
int main()
{
    while (scanf("%d%d",&n,&m) && n!=0)
    {
        for (int i=0;i<m;i++) scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
        sort(e,e+m,cmp);//把边按权值按从小到大排序 
        int tmp,ans=INF;
        for (int i=0;i<m;i++)//枚举最小边 
        {
            tmp=kruskal(i);
            if(tmp==-1) break;//如果从这条最小边开始已经无法产生生成树了,之后显然也不会有生成树了,那么我们就直接跳出即可
            if(tmp<ans) ans=tmp;//记录下最小的那个“最大边权值 减去 最小边权值”
        }
        if(ans==INF) printf("-1\n"); //如果答案没被更新过,那么显然连一棵生成树都没有,按题目要求打印-1 
        else printf("%d\n",ans);//否则就打印出答案即可 
    }
    return 0;
}


Slim Span

12-01

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.nnThe graph G is an ordered pair (V, E), where V is a set of vertices v1, v2, …, vn and E is a set of undirected edges e1, e2, …, em. Each edge e ∈ E has its weight w(e).nnA spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.nnnFigure 5: A graph G and the weights of the edgesnFor example, a graph G in Figure 5(a) has four vertices v1, v2, v3, v4 and five undirected edges e1, e2, e3, e4, e5. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).nnnFigure 6: Examples of the spanning trees of GnThere are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.nnYour job is to write a program that computes the smallest slimness.nnInputnnThe input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.nnn m na1 b1 w1n ⋮ nam bm wmnEvery input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak andbk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight ofek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).nnOutputnnFor each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.nnSample Inputnn4 5n1 2 3n1 3 5n1 4 6n2 4 6n3 4 7n4 6n1 2 10n1 3 100n1 4 90n2 3 20n2 4 80n3 4 40n2 1n1 2 1n3 0n3 1n1 2 1n3 3n1 2 2n2 3 5n1 3 6n5 10n1 2 110n1 3 120n1 4 130n1 5 120n2 3 110n2 4 120n2 5 130n3 4 120n3 5 110n4 5 120n5 10n1 2 9384n1 3 887n1 4 2778n1 5 6916n2 3 7794n2 4 8336n2 5 5387n3 4 493n3 5 6650n4 5 1422n5 8n1 2 1n2 3 100n3 4 100n4 5 100n1 5 50n2 5 50n3 5 50n4 1 150n0 0nSample Outputnn1n20n0n-1n-1n1n0n1686n50 问答

没有更多推荐了,返回首页