2015 多校联赛 ——HDU5294(最短路,最小切割)

Tricks Device

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1977    Accepted Submission(s): 509


Problem Description
Innocent Wu follows Dumb Zhang into a ancient tomb. Innocent Wu’s at the entrance of the tomb while Dumb Zhang’s at the end of it. The tomb is made up of many chambers, the total number is N. And there are M channels connecting the chambers. Innocent Wu wants to catch up Dumb Zhang to find out the answers of some questions, however, it’s Dumb Zhang’s intention to keep Innocent Wu in the dark, to do which he has to stop Innocent Wu from getting him. Only via the original shortest ways from the entrance to the end of the tomb costs the minimum time, and that’s the only chance Innocent Wu can catch Dumb Zhang.
Unfortunately, Dumb Zhang masters the art of becoming invisible(奇门遁甲) and tricks devices of this tomb, he can cut off the connections between chambers by using them. Dumb Zhang wanders how many channels at least he has to cut to stop Innocent Wu. And Innocent Wu wants to know after how many channels at most Dumb Zhang cut off Innocent Wu still has the chance to catch Dumb Zhang.
 

Input
There are multiple test cases. Please process till EOF.
For each case,the first line must includes two integers, N(<=2000), M(<=60000). N is the total number of the chambers, M is the total number of the channels.
In the following M lines, every line must includes three numbers, and use ai、bi、li as channel i connecting chamber ai and bi(1<=ai,bi<=n), it costs li(0<li<=100) minute to pass channel i.
The entrance of the tomb is at the chamber one, the end of tomb is at the chamber N.
 

Output
Output two numbers to stand for the answers of Dumb Zhang and Innocent Wu’s questions.
 

Sample Input
  
  
8 9 1 2 2 2 3 2 2 4 1 3 5 3 4 5 4 5 8 1 1 6 2 6 7 5 7 8 1
 

Sample Output
  
  
2 6
 

Author
FZUACM
 

Source

题意:

n个点,m条边,构建有权无向图。

求出删去最少条边数可以使得图没有最短路径,以及删出最多条边使得图仍有最多条路径。

思路:

最短路处理出最短路径图,做法是使用dis数组,若若dis[v]-dis[u] = w(u,v),则该路在最短路径中。

建出最短路径之后 跑一次网络流,得到第一个答案。

在跑最短路中记录最短路的最少路数,ans2 = m - minb.


#include <iostream>
#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
#include<cmath>
#include<map>
#include<queue>
using namespace std;
const int N=2005;
const int MAXN=(1<<31)-1;
int INF=0x7f7f7f7f;
 int T,n,m,k,tot;
 int cas=1;
 int head[N];
 struct Edge{
    int to,w,next;
 }edge[60005*2];
 void addedge(int u,int v,int w){
    edge[tot].to=v;
    edge[tot].w=w;
    edge[tot].next=head[u];
    head[u]=tot++;

    edge[tot].to=u;
    edge[tot].w=w;
    edge[tot].next=head[v];
    head[v]=tot++;
 }

 int dis[N],vis[N];
 int minb[N];
 int spfa(int s){
    memset(dis,0x3f,sizeof dis);
    memset(vis,0,sizeof vis);
    memset(minb,0x3f,sizeof minb);

    queue<int> q;
    dis[s]=0;
    minb[s]=0;
    vis[s]=1;
    q.push(s);

    while(!q.empty()){
        int u=q.front();q.pop();
        vis[u]=0;

        for(int i=head[u];~i;i=edge[i].next){
           int v=edge[i].to,w=edge[i].w;
           if(dis[v]==dis[u]+w){
                minb[v]=min(minb[v],minb[u]+1);
                if(!vis[v]){
                    vis[v]=1;
                    q.push(v);
                }
           }

           if(dis[v]>dis[u]+w){
                dis[v]=dis[u]+w;
                minb[v]=minb[u]+1;
                if(!vis[v]){
                    vis[v]=1;
                    q.push(v);
                }
           }


        }
    }
 }
 struct Eg{
    int u,cap,rev;
    Eg(int uu,int cc,int rr){
        u=uu;cap=cc;rev=rr;
    }
 };
 vector<Eg> G[N];
 void add(int u,int v,int cap){
    G[u].push_back(Eg(v,cap,G[v].size()));
    G[v].push_back(Eg(u,0,G[u].size()-1));
 }


 void build(){
    for(int i=1;i<=n;i++){
        for(int j=head[i];~j;j=edge[j].next){
            int v=edge[j].to,w=edge[j].w;
            if(dis[v]==dis[i]+w){
                add(i,v,1);

            }
        }
    }
 }
 bool used[N];
 int dfs(int v,int t,int f){
    if(v==t) return f;
    used[v]=true;
    for(int i=0;i<G[v].size();i++){
        Eg &e=G[v][i];
        if(!used[e.u] && e.cap>0){
            int d=dfs(e.u,t,min(f,e.cap));
            if(d>0){
                e.cap-=d;
                G[e.u][e.rev].cap+=d;
                return d;
            }
        }
    }
    return 0;
 }
 int max_flow(int s,int t){
  int flow=0;
  while(1){
    memset(used,0,sizeof used);
    int f=dfs(s,t,INF);
    if(f==0) return flow;
    flow+=f;
  }
 }
  void init(){
    tot=0;
    memset(head,-1,sizeof head);
    for(int i=0;i<N;i++) G[i].clear();
 }
int main()
{
#ifndef  ONLINE_JUDGE
   freopen("aaa","r",stdin);
#endif


    while(~scanf("%d%d",&n,&m)){
        init();
        for(int i=0;i<m;i++){
            int u,v,w;
            scanf("%d %d %d",&u,&v,&w);
            addedge(u,v,w);
        }
        spfa(1);

        build();
        int ans=max_flow(1,n);
        printf("%d %d\n",ans,m-minb[n]);
    }



    return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋转不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋转不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋转不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步转换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋转不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋转不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值