人工智能 - 机器学习、深度学习、强化学习是人工智能领域的理论基础和方法论

机器学习、深度学习、强化学习是人工智能领域的三大核心方向,各自具有独特的理论基础和方法论。以下是它们的核心理论知识总结:


一、机器学习(Machine Learning, ML)

1. 基础概念
  • 目标:通过数据驱动的方式,让机器从经验中学习规律,完成预测、分类或决策任务。

  • 核心范式

    • 监督学习(输入-输出对,如回归、分类)

    • 无监督学习(无标签数据,如聚类、降维)

    • 半监督学习(少量标签+大量无标签数据)

    • 强化学习(与环境的交互反馈,但通常单独分类)。

2. 核心理论
  • 统计学习理论

    • 泛化能力:模型在未知数据上的表现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天机️灵韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值